Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Overview

Rate Limit Semaphore

Rate limit semaphore for async-style (any core)

PyPI - Python Version PyPI - Implementation PyPI Coverage Status


There are two implementations of rate limit semaphore. Live demo shows how FixedNewPreviousDelaySemaphore and FixedNewFirstDelaySemaphore work


Live demo Live demo

Overview

import datetime
import ralisem

# Or another implementation
sem = ralisem.FixedNewPreviousDelaySemaphore(
    access_times=3, per=datetime.timedelta(seconds=1)
)
async with sem:
    ...

Difference:

  • FixedNewPreviousDelaySemaphore: Sures the last and a new access have a fixed required delay (per / access_times)
  • FixedNewFirstDelaySemaphore: Sures first and last in series (serias is access_times) have a fixed delay (per)

Methods

All of these implementations are inherited from one base TimeRateLimitSemaphoreBase. Check out full methods here

Installation

Via PyPI:

python -m pip install ralisem

Or via GitHub

python -m pip install https://github.com/deknowny/rate-limit-semaphore/archive/main.zip

Contributing

Check out Contributing section

You might also like...
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

Implementation of
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

PyTorch implementation of some learning rate schedulers for deep learning researcher.
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

A Pytorch Implementation of a continuously rate adjustable learned image compression framework.
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

Pytorch implementation of Learning Rate Dropout.
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

Releases(v0.1.0)
  • v0.1.0(Feb 15, 2022)

    A few words…

    Если вы, как и я, уже устали писать что-то под API, имеющее rate limit на запросы, и постоянно делать костыли, чтобы этот rate limit не превысить, то эта библиотека именно для вас

    ralisem предоставляет две имплементации семафора с ограничением по частоте исполнения вместо ограничения по количеству исполняемых одновременно задач, что предоставляет стандартный asyncio.Semaphore. Одна из них ожидает равное количество времени между каждыми исполняемыми задачами, другая проверяет, чтобы 1 и последняя задача в серии имели заданный промежуток ожидания (прикрепил две лайв демки). Сделано на anyio, поэтому будет работать как на asyncio, так и на trio

    Да, будет заюзано в квике для ограничения частоты обращений к API (собственно, это и послужило поводом)

    Если кто подскажет, как на такое писать юнит тесты — буду рад (думал как-то через моки текущего времени, но жутко лень). Сейчас работает на честном слове

    Доки здесь не нужно, чисто пара слов в ридми. На PyPI залита

    Source code(tar.gz)
    Source code(zip)
Owner
Yan Kurbatov
Open Source and Back-End Python developer
Yan Kurbatov
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 0 Dec 15, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023