Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Overview

Fast-Partial-Ranking-MNL

This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper:

Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling.

Jiaqi Ma*, Xingjian Zhang*, and Qiaozhu Mei. WSDM 2022.

(*: Equal contribution.)

Requirements

The code requires the following packages.

more_itertools==8.10.0
networkx==2.5.1
numpy==1.19.5
pandas==1.1.5
pyclustering==0.10.1.2
torch==1.9.0
tqdm==4.62.3

Example Commands to Run the Experiments

  1. Learning single MNL from partial rankings on synthetic data
python3 dag_synthetic.py --num_classes 100 --num_samples 5000  # single MNL
  1. Learning mixture of MNL from partial rankings on synthetic data
python3 dag_synthetic.py --num_classes 60 --num_samples 5000 --alphas [1,1,1]  --init_by_cluster # 3 MNLs with clustering based init
  1. Network formation modeling of synthetic network data
python3 network_synthetic.py -r 0.5 -p 0.5 --fof --ua --pa --loss topk  # run full model with 4 components on a mixed (r,p)-graph
  1. Network formation modeling of Flickr & Microsoft Academic Graph
cd source
wget -4 http://socialnetworks.mpi-sws.mpg.de/data/flickr-growth.txt.gz ../data/
python3 flickr_process.py # process flickr-growth.txt.gz, which is downloaded from http://socialnetworks.mpi-sws.mpg.de/data/flickr-growth.txt.gz
python3 flickr_train.py
# download mag_cli.csv by google drive
python3 mag_process.py  # process mag_cli.csv, which is downloaded from https://drive.google.com/file/d/17bgLs1iR96JW3Rd0mex3IK8qyU-qRElB/view?usp=sharing
python3 mag_train.py

Cite

@article{ma2022fast,
  title={Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling},
  author={Ma, Jiaqi and Zhang, Xingjian and Mei, Qiaozhu},
  journal={Proceedings of the 15th ACM International Conference on Web Search and Data Mining},
  year={2022}
}
Owner
Xingjian Zhang
Computer Science BSE @umich 🏫 Electrical & Computer Engineering BSE @sjtu 🎓 Deep Learning Intern @intel. 🖥
Xingjian Zhang
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022