code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

Related tags

Deep LearningMMNet
Overview

MMNet

This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.".

Pre-requisite

conda create -n mmnet python==3.8.0
conda activate mmnet
conda install torch==1.8.1 torchvision==0.9.1
pip install matplotlib scikit-image pandas

for installation of gluoncvth (fcn-resnet101):

git clone https://github.com/StacyYang/gluoncv-torch.git
cd gluoncv-torch
python setup.py install

Reproduction

for test

Trained models are available on [google drive].

pascal with fcn-resnet101 backbone([email protected]:81.6%):

python test.py --alpha 0.05 --backbone fcn-resnet101 --ckp_name path\to\ckp_pascal_fcnres101.pth --resize 224,320

spair with fcn-resnet101 backbone([email protected]:46.6%):

python test.py --alpha 0.05 --benchmark spair --backbone fcn-resnet101 --ckp_name path\to\ckp_spair_fcnres101.pth --resize 224,320

Bibtex

If you use this code for your research, please consider citing:

@article{zhao2021multi,
  title={Multi-scale Matching Networks for Semantic Correspondence},
  author={Zhao, Dongyang and Song, Ziyang and Ji, Zhenghao and Zhao, Gangming and Ge, Weifeng and Yu, Yizhou},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}
You might also like...
A Pytorch implementation of
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task A PyTorch implementation of
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

《Dual-Resolution Correspondence Network》(NeurIPS 2020)
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Comments
  • NaN during training

    NaN during training

    Hi, congrats on your paper! I was trying to run your training code (with resnet 101 on pf-pascal) but directly after a couple of iterations, nan appear in the input. Have you ever seen this issue? Thanks

    opened by PruneTruong 2
  • In def calLayer1,i do not know where are self.conv1_1_down,self.conv1_2_down,self.conv1_3_down,self.wa_1

    In def calLayer1,i do not know where are self.conv1_1_down,self.conv1_2_down,self.conv1_3_down,self.wa_1

    Hello,this paper is very nice,i am very love it. I read your code,in Model.py, def calLayer1(self, feats): sum1 = self.conv1_1_down(self.msblock1_1(feats[1])) +
    self.conv1_2_down(self.msblock1_2(feats[2])) +
    self.conv1_3_down(self.msblock1_3(feats[3])) sum1 = self.wa_1(sum1) return sum1 I do not find where are these operation,self.conv1_1_down,self.conv1_2_down,self.conv1_3_down,self.wa_1,so where are these ,in which document.Thank you,looking forward to your reply.

    opened by liang532 1
  • How to prepare the PF-Pascal dataset?

    How to prepare the PF-Pascal dataset?

    I downloaded the PF-dataset-Pascal.zip from the Proposal Flow paper's web page, extracted it, and run the next line of command, but get errors about missing data files.

    Input:

    python test.py --alpha 0.05 --backbone fcn-resnet101 --ckp_name assets/model/mmnet_fcnresnet101_pascal.pth --resize 224,320
    

    Expected output: some results about the benchmark results.

    Actual output:

    currently executing test.py file.
    2021-11-19 02:01:59,172 - INFO - Options listed below:----------------
    2021-11-19 02:01:59,172 - INFO - name: framework_train
    2021-11-19 02:01:59,172 - INFO - benchmark: pfpascal
    2021-11-19 02:01:59,172 - INFO - thresh_type: auto
    2021-11-19 02:01:59,172 - INFO - backbone_name: fcn-resnet101
    2021-11-19 02:01:59,172 - INFO - ms_rate: 4
    2021-11-19 02:01:59,173 - INFO - feature_channel: 21
    2021-11-19 02:01:59,173 - INFO - batch: 5
    2021-11-19 02:01:59,173 - INFO - gpu: 0
    2021-11-19 02:01:59,173 - INFO - data_path: /data/SC_Dataset
    2021-11-19 02:01:59,173 - INFO - ckp_path: ./checkpoints_debug
    2021-11-19 02:01:59,173 - INFO - visualization_path: visualization
    2021-11-19 02:01:59,173 - INFO - model_type: MMNet
    2021-11-19 02:01:59,173 - INFO - ckp_name: assets/model/mmnet_fcnresnet101_pascal.pth
    2021-11-19 02:01:59,173 - INFO - log_path: ./logs/
    2021-11-19 02:01:59,173 - INFO - resize: 224,320
    2021-11-19 02:01:59,173 - INFO - max_kps_num: 50
    2021-11-19 02:01:59,173 - INFO - split_type: test
    2021-11-19 02:01:59,173 - INFO - alpha: 0.05
    2021-11-19 02:01:59,173 - INFO - resolution: 2
    2021-11-19 02:01:59,173 - INFO - Options all listed.------------------
    2021-11-19 02:01:59,173 - INFO - ckp file: assets/model/mmnet_fcnresnet101_pascal.pth
    Traceback (most recent call last):
      File "/home/runner/MMNet/test.py", line 127, in <module>
        test(logger, options)
      File "/home/runner/MMNet/test.py", line 65, in test
        test_dataset = Dataset.CorrespondenceDataset(
      File "/home/runner/MMNet/data/PascalDataset.py", line 32, in __init__
        self.train_data = pd.read_csv(self.spt_path)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/util/_decorators.py", line 311, in wrapper
        return func(*args, **kwargs)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 586, in read_csv
        return _read(filepath_or_buffer, kwds)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 482, in _read
        parser = TextFileReader(filepath_or_buffer, **kwds)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 811, in __init__
        self._engine = self._make_engine(self.engine)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1040, in _make_engine
        return mapping[engine](self.f, **self.options)  # type: ignore[call-arg]
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 51, in __init__
        self._open_handles(src, kwds)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/base_parser.py", line 222, in _open_handles
        self.handles = get_handle(
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/common.py", line 702, in get_handle
        handle = open(
    FileNotFoundError: [Errno 2] No such file or directory: '/data/SC_Dataset/PF-PASCAL/test_pairs.csv'
    

    P.S. Output of executing ls /data/SC_Dataset/PF-PASCAL/:

    Annotations  html  index.html  JPEGImages  parsePascalVOC.mat  ShowMatchingPairs
    
    opened by tjyuyao 2
  • How to reproduce the reported test accuracy?

    How to reproduce the reported test accuracy?

    By running given following command with code on the main branch:

    python test.py --alpha 0.05 --backbone fcn-resnet101 --ckp_name assets/model/mmnet_fcnresnet101_spair.pth --resize 224,320 --benchmark spair
    

    I expect to get the reported accuracy in the Table.2 of paper, i.e. 50.4 "all" accuracy, or spair with fcn-resnet101 backbone([email protected]:46.6%): as noted in the README.md file. However I get the following output, finding nowhere the related results. Can you point out the steps to reproduce the test accuracy?

    2021-11-19 00:49:54,452 - INFO - Options listed below:----------------
    2021-11-19 00:49:54,452 - INFO - name: framework_train
    2021-11-19 00:49:54,453 - INFO - benchmark: spair
    2021-11-19 00:49:54,453 - INFO - thresh_type: auto
    2021-11-19 00:49:54,454 - INFO - backbone_name: fcn-resnet101
    2021-11-19 00:49:54,455 - INFO - ms_rate: 4
    2021-11-19 00:49:54,455 - INFO - feature_channel: 21
    2021-11-19 00:49:54,456 - INFO - batch: 5
    2021-11-19 00:49:54,456 - INFO - gpu: 0
    2021-11-19 00:49:54,457 - INFO - data_path: /data/SC_Dataset
    2021-11-19 00:49:54,457 - INFO - ckp_path: ./checkpoints_debug
    2021-11-19 00:49:54,458 - INFO - visualization_path: visualization
    2021-11-19 00:49:54,458 - INFO - model_type: MMNet
    2021-11-19 00:49:54,459 - INFO - ckp_name: assets/model/mmnet_fcnresnet101_spair.pth
    2021-11-19 00:49:54,459 - INFO - log_path: ./logs/
    2021-11-19 00:49:54,460 - INFO - resize: 224,320
    2021-11-19 00:49:54,460 - INFO - max_kps_num: 50
    2021-11-19 00:49:54,461 - INFO - split_type: test
    2021-11-19 00:49:54,461 - INFO - alpha: 0.05
    2021-11-19 00:49:54,462 - INFO - resolution: 2
    2021-11-19 00:49:54,462 - INFO - Options all listed.------------------
    2021-11-19 00:49:54,463 - INFO - ckp file: assets/model/mmnet_fcnresnet101_spair.pth
    2021-11-19 00:50:04,950 - INFO - [    0/12234]: 	 [Pair PCK: 0.333]	[Average: 0.333] aeroplane
    2021-11-19 00:50:04,953 - INFO - [    1/12234]: 	 [Pair PCK: 0.100]	[Average: 0.217] aeroplane
    2021-11-19 00:50:04,956 - INFO - [    2/12234]: 	 [Pair PCK: 0.308]	[Average: 0.247] aeroplane
    2021-11-19 00:50:04,958 - INFO - [    3/12234]: 	 [Pair PCK: 0.364]	[Average: 0.276] aeroplane
    2021-11-19 00:50:04,960 - INFO - [    4/12234]: 	 [Pair PCK: 0.000]	[Average: 0.221] aeroplane
    2021-11-19 00:50:05,575 - INFO - [    5/12234]: 	 [Pair PCK: 0.200]	[Average: 0.217] aeroplane
    2021-11-19 00:50:05,577 - INFO - [    6/12234]: 	 [Pair PCK: 0.250]	[Average: 0.222] aeroplane
    2021-11-19 00:50:05,580 - INFO - [    7/12234]: 	 [Pair PCK: 0.308]	[Average: 0.233] aeroplane
    2021-11-19 00:50:05,583 - INFO - [    8/12234]: 	 [Pair PCK: 0.182]	[Average: 0.227] aeroplane
    2021-11-19 00:50:05,585 - INFO - [    9/12234]: 	 [Pair PCK: 0.636]	[Average: 0.268] aeroplane
    2021-11-19 00:50:06,153 - INFO - [   10/12234]: 	 [Pair PCK: 0.667]	[Average: 0.304] aeroplane
    2021-11-19 00:50:06,156 - INFO - [   11/12234]: 	 [Pair PCK: 0.385]	[Average: 0.311] aeroplane
    2021-11-19 00:50:06,158 - INFO - [   12/12234]: 	 [Pair PCK: 0.455]	[Average: 0.322] aeroplane
    2021-11-19 00:50:06,160 - INFO - [   13/12234]: 	 [Pair PCK: 0.250]	[Average: 0.317] aeroplane
    2021-11-19 00:50:06,163 - INFO - [   14/12234]: 	 [Pair PCK: 0.615]	[Average: 0.337] aeroplane
    2021-11-19 00:50:06,731 - INFO - [   15/12234]: 	 [Pair PCK: 0.000]	[Average: 0.316] aeroplane
    ...
    2021-11-19 01:13:47,264 - INFO - [12216/12234]: 	 [Pair PCK: 0.222]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,265 - INFO - [12217/12234]: 	 [Pair PCK: 0.200]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,266 - INFO - [12218/12234]: 	 [Pair PCK: 0.250]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,268 - INFO - [12219/12234]: 	 [Pair PCK: 0.222]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,837 - INFO - [12220/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,838 - INFO - [12221/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,848 - INFO - [12222/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,850 - INFO - [12223/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,853 - INFO - [12224/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,422 - INFO - [12225/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,424 - INFO - [12226/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,425 - INFO - [12227/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,427 - INFO - [12228/12234]: 	 [Pair PCK: 0.333]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,429 - INFO - [12229/12234]: 	 [Pair PCK: 0.222]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,896 - INFO - [12230/12234]: 	 [Pair PCK: 0.333]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,899 - INFO - [12231/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,899 - INFO - [12232/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,901 - INFO - [12233/12234]: 	 [Pair PCK: 0.111]	[Average: 0.333] tvmonitor
    
    opened by tjyuyao 1
Releases(v0.1.0)
Owner
joey zhao
Master in Computer Sciences and Technology at Fudan University
joey zhao
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Code for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators"

Query Variation Generators This repository contains the code and annotation data for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelin

Gustavo Penha 12 Nov 20, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022