Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Overview

Memory-Efficient Multi-Level In-Situ Generation (MLG)

By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan.

This repo is the official implementation of "Towards Memory-Efficient Neural Networks via Multi-Level in situ Generation".

Introduction

MLG is a general and unified framework to trade expensive memory transactions with ultra-fast on-chip computations, directly translating to performance improvement. MLG explores the intrinsic correlations and bit-level redundancy within DNN kernels and propose a multi-level in situ generation mechanism with mixed-precision bases to achieve on-the-fly recovery of high-resolution parameters with minimum hardware overhead. MLG can boost the memory efficiency by 10-20× with comparable accuracy over four state-of-theart designs, when benchmarked on ResNet-18/DenseNet121/MobileNetV2/V3 with various tasks

flow

We explore intra-kernel and cross-kernel correlation in the accuracy (blue curve) and memory compression ratio (black curve) space with ResNet18/CIFAR-10. Our method generalizes prior DSConv and Blueprint Conv with better efficiency-performance trade-off. teaser

On CIFAR-10/100 and ResNet-18/DenseNet-121, we surpass prior low-rank methods with 10-20x less weight storage cost. exp

Dependencies

  • Python >= 3.6
  • pyutils >= 0.0.1. See pyutils for installation.
  • pytorch-onn >= 0.0.2. See pytorch-onn for installation.
  • Python libraries listed in requirements.txt
  • NVIDIA GPUs and CUDA >= 10.2

Structures

  • core/
    • models/
      • layers/
        • mlg_conv2d and mlg_linear: MLG layer definition
      • resnet.py: MLG-based ResNet definition
      • model_base.py: base model definition with all model utilities
    • builder.py: build training utilities
  • configs: YAML-based config files
  • scripts/: contains experiment scripts
  • train.py: training logic

Usage

  • Pretrain teacher model.
    > python3 train.py configs/cifar10/resnet18/train/pretrain.yml

  • Train MLG-based student model with L2-norm-based projection, knowledge distillation, multi-level orthonormality regularization, (Bi, Bo, qb, qu, qv) = (2, 44, 3, 6, 3).
    > python3 train.py configs/cifar10/resnet18/train/train.yml --teacher.checkpoint=path-to-teacher-ckpt --mlg.projection_alg=train --mlg.kd=1 --mlg.base_in=2 --mlg.base_out=44 --mlg.basis_bit=3 --mlg.coeff_in_bit=6 --mlg.coeff_out_bit=3 --criterion.ortho_weight_loss=0.05

  • Scripts for experiments are in ./scripts. For example, to run teacher model pretraining, you can write proper task setting in SCRIPT=scripts/cifar10/resnet18/pretrain.py and run
    > python3 SCRIPT

  • To train ML-based student model with KD and projection, you can write proper task setting in SCRIPT=scripts/cifar10/resnet18/train.py (need to provide the pretrained teacher checkpoint) and run
    > python3 SCRIPT

Citing Memory-Efficient Multi-Level In-Situ Generation (MLG)

@inproceedings{gu2021MLG,
  title={Towards Memory-Efficient Neural Networks via Multi-Level in situ Generation},
  author={Jiaqi Gu and Hanqing Zhu and Chenghao Feng and Mingjie Liu and Zixuan Jiang and Ray T. Chen and David Z. Pan},
  journal={International Conference on Computer Vision (ICCV)},
  year={2021}
}

Related Papers

  • Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen, David Z. Pan, "Towards Memory-Efficient Neural Networks via Multi-Level in situ Generation," ICCV, 2021. [paper | slides]
Owner
Jiaqi Gu
PhD Student at UT Austin
Jiaqi Gu
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022