Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Overview

Memory-Efficient Multi-Level In-Situ Generation (MLG)

By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan.

This repo is the official implementation of "Towards Memory-Efficient Neural Networks via Multi-Level in situ Generation".

Introduction

MLG is a general and unified framework to trade expensive memory transactions with ultra-fast on-chip computations, directly translating to performance improvement. MLG explores the intrinsic correlations and bit-level redundancy within DNN kernels and propose a multi-level in situ generation mechanism with mixed-precision bases to achieve on-the-fly recovery of high-resolution parameters with minimum hardware overhead. MLG can boost the memory efficiency by 10-20× with comparable accuracy over four state-of-theart designs, when benchmarked on ResNet-18/DenseNet121/MobileNetV2/V3 with various tasks

flow

We explore intra-kernel and cross-kernel correlation in the accuracy (blue curve) and memory compression ratio (black curve) space with ResNet18/CIFAR-10. Our method generalizes prior DSConv and Blueprint Conv with better efficiency-performance trade-off. teaser

On CIFAR-10/100 and ResNet-18/DenseNet-121, we surpass prior low-rank methods with 10-20x less weight storage cost. exp

Dependencies

  • Python >= 3.6
  • pyutils >= 0.0.1. See pyutils for installation.
  • pytorch-onn >= 0.0.2. See pytorch-onn for installation.
  • Python libraries listed in requirements.txt
  • NVIDIA GPUs and CUDA >= 10.2

Structures

  • core/
    • models/
      • layers/
        • mlg_conv2d and mlg_linear: MLG layer definition
      • resnet.py: MLG-based ResNet definition
      • model_base.py: base model definition with all model utilities
    • builder.py: build training utilities
  • configs: YAML-based config files
  • scripts/: contains experiment scripts
  • train.py: training logic

Usage

  • Pretrain teacher model.
    > python3 train.py configs/cifar10/resnet18/train/pretrain.yml

  • Train MLG-based student model with L2-norm-based projection, knowledge distillation, multi-level orthonormality regularization, (Bi, Bo, qb, qu, qv) = (2, 44, 3, 6, 3).
    > python3 train.py configs/cifar10/resnet18/train/train.yml --teacher.checkpoint=path-to-teacher-ckpt --mlg.projection_alg=train --mlg.kd=1 --mlg.base_in=2 --mlg.base_out=44 --mlg.basis_bit=3 --mlg.coeff_in_bit=6 --mlg.coeff_out_bit=3 --criterion.ortho_weight_loss=0.05

  • Scripts for experiments are in ./scripts. For example, to run teacher model pretraining, you can write proper task setting in SCRIPT=scripts/cifar10/resnet18/pretrain.py and run
    > python3 SCRIPT

  • To train ML-based student model with KD and projection, you can write proper task setting in SCRIPT=scripts/cifar10/resnet18/train.py (need to provide the pretrained teacher checkpoint) and run
    > python3 SCRIPT

Citing Memory-Efficient Multi-Level In-Situ Generation (MLG)

@inproceedings{gu2021MLG,
  title={Towards Memory-Efficient Neural Networks via Multi-Level in situ Generation},
  author={Jiaqi Gu and Hanqing Zhu and Chenghao Feng and Mingjie Liu and Zixuan Jiang and Ray T. Chen and David Z. Pan},
  journal={International Conference on Computer Vision (ICCV)},
  year={2021}
}

Related Papers

  • Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen, David Z. Pan, "Towards Memory-Efficient Neural Networks via Multi-Level in situ Generation," ICCV, 2021. [paper | slides]
Owner
Jiaqi Gu
PhD Student at UT Austin
Jiaqi Gu
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
A simple editor for captions in .SRT file extension

WaySRT A simple editor for captions in .SRT file extension The program doesn't use any external dependecies, just run: python way_srt.py {file_name.sr

Gustavo Lopes 3 Nov 16, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022