MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

Overview

MemStream

Implementation of

MemStream detects anomalies from a multi-aspect data stream. We output an anomaly score for each record. MemStream is a memory augmented feature extractor, allows for quick retraining, gives a theoretical bound on the memory size for effective drift handling, is robust to memory poisoning, and outperforms 11 state-of-the-art streaming anomaly detection baselines.

After an initial training of the feature extractor on a small subset of normal data, MemStream processes records in two steps: (i) It outputs anomaly scores for each record by querying the memory for K-nearest neighbours to the record encoding and calculating a discounted distance and (ii) It updates the memory, in a FIFO manner, if the anomaly score is within an update threshold β.

Demo

  1. KDDCUP99: Run python3 memstream.py --dataset KDD --beta 1 --memlen 256
  2. NSL-KDD: Run python3 memstream.py --dataset NSL --beta 0.1 --memlen 2048
  3. UNSW-NB 15: Run python3 memstream.py --dataset UNSW --beta 0.1 --memlen 2048
  4. CICIDS-DoS: Run python3 memstream.py --dataset DOS --beta 0.1 --memlen 2048
  5. SYN: Run python3 memstream-syn.py --dataset SYN --beta 1 --memlen 16
  6. Ionosphere: Run python3 memstream.py --dataset ionosphere --beta 0.001 --memlen 4
  7. Cardiotocography: Run python3 memstream.py --dataset cardio --beta 1 --memlen 64
  8. Statlog Landsat Satellite: Run python3 memstream.py --dataset statlog --beta 0.01 --memlen 32
  9. Satimage-2: Run python3 memstream.py --dataset satimage-2 --beta 10 --memlen 256
  10. Mammography: Run python3 memstream.py --dataset mammography --beta 0.1 --memlen 128
  11. Pima Indians Diabetes: Run python3 memstream.py --dataset pima --beta 0.001 --memlen 64
  12. Covertype: Run python3 memstream.py --dataset cover --beta 0.0001 --memlen 2048

Command line options

  • --dataset: The dataset to be used for training. Choices 'NSL', 'KDD', 'UNSW', 'DOS'. (default 'NSL')
  • --beta: The threshold beta to be used. (default: 0.1)
  • --memlen: The size of the Memory Module (default: 2048)
  • --dev: Pytorch device to be used for training like "cpu", "cuda:0" etc. (default: 'cuda:0')
  • --lr: Learning rate (default: 0.01)
  • --epochs: Number of epochs (default: 5000)

Input file format

MemStream expects the input multi-aspect record stream to be stored in a contains , separated file.

Datasets

Processed Datasets can be downloaded from here. Please unzip and place the files in the data folder of the repository.

  1. KDDCUP99
  2. NSL-KDD
  3. UNSW-NB 15
  4. CICIDS-DoS
  5. Synthetic Dataset (Introduced in paper)
  6. Ionosphere
  7. Cardiotocography
  8. Statlog Landsat Satellite
  9. Satimage-2
  10. Mammography
  11. Pima Indians Diabetes
  12. Covertype

Environment

This code has been tested on Debian GNU/Linux 9 with a 12GB Nvidia GeForce RTX 2080 Ti GPU, CUDA Version 10.2 and PyTorch 1.5.

Owner
Stream-AD
Streaming Anomaly Detection
Stream-AD
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022