This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Overview

Classifier-Balancing

This repository contains code for the paper:

Decoupling Representation and Classifier for Long-Tailed Recognition
Bingyi Kang, Saining Xie,Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, Yannis Kalantidis
[OpenReview] [Arxiv] [PDF] [Slides] [@ICLR]
Facebook AI Research, National University of Singapore
International Conference on Learning Representations (ICLR), 2020

Abstract

The long-tail distribution of the visual world poses great challenges for deep learning based classification models on how to handle the class imbalance problem. Existing solutions usually involve class-balancing strategies, e.g., by loss re-weighting, data re-sampling, or transfer learning from head- to tail-classes, but all of them adhere to the scheme of jointly learning representations and classifiers. In this work, we decouple the learning procedure into representation learning and classification, and systematically explore how different balancing strategies affect them for long-tailed recognition. The findings are surprising: (1) data imbalance might not be an issue in learning high-quality representations; (2) with representations learned with the simplest instance-balanced (natural) sampling, it is also possible to achieve strong long-tailed recognition ability with relative ease by adjusting only the classifier. We conduct extensive experiments and set new state-of-the-art performance on common long-tailed benchmarks like ImageNet-LT, Places-LT and iNaturalist, showing that it is possible to outperform carefully designed losses, sampling strategies, even complex modules with memory, by using a straightforward approach that decouples representation and classification.

 

 

If you find this code useful, consider citing our work:

@inproceedings{kang2019decoupling,
  title={Decoupling representation and classifier for long-tailed recognition},
  author={Kang, Bingyi and Xie, Saining and Rohrbach, Marcus and Yan, Zhicheng
          and Gordo, Albert and Feng, Jiashi and Kalantidis, Yannis},
  booktitle={Eighth International Conference on Learning Representations (ICLR)},
  year={2020}
}

Requirements

The code is based on https://github.com/zhmiao/OpenLongTailRecognition-OLTR.

Dataset

  • ImageNet_LT and Places_LT

    Download the ImageNet_2014 and Places_365.

  • iNaturalist 2018

    • Download the dataset following here.
    • cd data/iNaturalist18, Generate image name files with this script or use the existing ones [here].

Change the data_root in main.py accordingly.

Representation Learning

  1. Instance-balanced Sampling
python main.py --cfg ./config/ImageNet_LT/feat_uniform.yaml
  1. Class-balanced Sampling
python main.py --cfg ./config/ImageNet_LT/feat_balance.yaml
  1. Square-root Sampling
python main.py --cfg ./config/ImageNet_LT/feat_squareroot.yaml
  1. Progressively-balancing Sampling
python main.py --cfg ./config/ImageNet_LT/feat_shift.yaml

Test the joint learned classifier with representation learning

python main.py --cfg ./config/ImageNet_LT/feat_uniform.yaml --test 

Classifier Learning

  1. Nearest Class Mean classifier (NCM).
python main.py --cfg ./config/ImageNet_LT/feat_uniform.yaml --test --knn
  1. Classifier Re-training (cRT)
python main.py --cfg ./config/ImageNet_LT/cls_crt.yaml --model_dir ./logs/ImageNet_LT/models/resnext50_uniform_e90
python main.py --cfg ./config/ImageNet_LT/cls_crt.yaml --test
  1. Tau-normalization

Extract fatures

for split in train_split val test
do
  python main.py --cfg ./config/ImageNet_LT/feat_uniform.yaml --test --save_feat $split
done

Evaluation

for split in train val test
do
  python tau_norm.py --root ./logs/ImageNet_LT/models/resnext50_uniform_e90/ --type $split
done
  1. Learnable weight scaling (LWS)
python main.py --cfg ./config/ImageNet_LT/cls_lws.yaml --model_dir ./logs/ImageNet_LT/models/resnext50_uniform_e90
python main.py --cfg ./config/ImageNet_LT/cls_lws.yaml --test

Results and Models

ImageNet_LT

  • Representation learning

    Sampling Many Medium Few All Model
    Instance-Balanced 65.9 37.5 7.7 44.4 ResNeXt50
    Class-Balanced 61.8 40.1 15.5 45.1 ResNeXt50
    Square-Root 64.3 41.2 17.0 46.8 ResNeXt50
    Progressively-Balanced 61.9 43.2 19.4 47.2 ResNeXt50

    For other models trained with instance-balanced (natural) sampling:
    [ResNet50] [ResNet101] [ResNet152] [ResNeXt101] [ResNeXt152]

  • Classifier learning

    Classifier Many Medium Few All Model
    Joint 65.9 37.5 7.7 44.4 ResNeXt50
    NCM 56.6 45.3 28.1 47.3 ResNeXt50
    cRT 61.8 46.2 27.4 49.6 ResNeXt50
    Tau-normalization 59.1 46.9 30.7 49.4 ResNeXt50
    LWS 60.2 47.2 30.3 49.9 ResNeXt50

iNaturalist 2018

Places_LT

  • Representaion learning
    We provide a pretrained ResNet152 with instance-balanced (natural) sampling: [link]
  • Classifier learning
    We provide the cRT and LWS models based on above pretrained ResNet152 model as follows:
    [ResNet152(cRT)] [ResNet152(LWS)]

To test a pretrained model:
python main.py --cfg /path/to/config/file --model_dir /path/to/model/file --test

License

This project is licensed under the license found in the LICENSE file in the root directory of this source tree (here). Portions of the source code are from the OLTR project.

Owner
Facebook Research
Facebook Research
Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Gabriela Surita 7 Dec 01, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022