Code for "On Memorization in Probabilistic Deep Generative Models"

Overview

On Memorization in Probabilistic Deep Generative Models

This repository contains the code necessary to reproduce the experiments in On Memorization in Probabilistic Deep Generative Models. You can also use this code to measure memorization in other types of probabilistic deep generative models. If you use our code in your own work please cite the paper using, for instance, the following BibTeX entry:

@article{van2021memorization,
  title={On Memorization in Probabilistic Deep Generative Models},
  author={{Van den Burg}, G. J. J. and Williams, C. K. I.},
  journal={arXiv preprint arXiv:2106.03216},
  year={2021}
}

If you have any questions or encounter an issue when using this code, please send an email to gertjanvandenburg at gmail dot com.

Introduction

The files in the scripts directory are needed to reproduce the experiments and generate the figures in the paper. The experiments are organized using the Makefile provided. To reproduce the experiments or recreate the figures from the analysis, you'll have to install a number of dependencies. We use PyTorch to implement the deep learning algorithms. If you don't wish to re-run all the models, you can download the result files used in the paper (see below).

The scripts are all written in Python, and the necessary external dependencies can be found in the requirements.txt file. These can be installed using:

$ pip install -r requirements.txt

To recreate the figures the following system dependencies are also needed: pdflatex, latexmk, lualatex, and make. These programs are available for all major platforms.

Reproducing the results

To train the models on the different data sets, you can run:

$ make memorization

Note that depending on your machine this may take some time, so it might be easier to simply download the result files instead. It is also worth mentioning that while we have made an effort to ensure reproducibility by setting the random seed in PyTorch, platform or package version differences may result in slightly different output files (see also PyTorch Reproducibility).

All figures in the paper are generated from the raw result files using Python scripts. First, the summarize.py script takes the raw result files and creates summary files for each data set. Next, the analysis scripts are used to generate the figures, most of which are LaTeX files that require compilation using PDFLaTeX or LuaLaTeX. Simply run:

$ make analysis

to create the summaries and the output files. When using the result files linked below this will give the exact same figures as shown in the paper.

Result files

Due to their size, the raw result files are not contained in this repository, but can be downloaded separately from this link (about 2.6GB). After downloading the results.zip file, unpack it and move the results directory to where you've cloned this repository (so adjacent to the scripts directory). Below is a concise overview of the necessary commands:

$ git clone https://github.com/alan-turing-institute/memorization
$ cd memorization
$ wget https://gertjanvandenburg.com/projects/memorization/results.zip # or download the file in some other way
$ unzip results.zip
$ touch results/*/*/*          # update modification time of the result files
$ make analysis                # optionally, run ``make -n analysis`` first to see what will happen

After unpacking the zip file, you can optionally verify the integrity of the results using the SHA-256 checksums provided:

$ sha256sum --check results.sha256

License

The code in this repository is licensed under the MIT license. See the LICENSE file for further details. Reuse of the code in this repository is allowed, but should cite our paper.

Notes

If you find any problems or have a suggestion for improvement of this repository, please let me know as it will help make this resource better for everyone.

Owner
The Alan Turing Institute
The UK's national institute for data science and artificial intelligence.
The Alan Turing Institute
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022