PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

Overview

PatchGame: Learning to Signal Mid-level Patches in Referential Games

This repository is the official implementation of the paper - "PatchGame: Learning to SignalMid-level Patches in Referential Games"

Overview

Requirements

We recommend using anaconda or miniconda for python. Our code has been tested with python=3.8 on linux.

To create a new environment with conda

conda create -n patchgame python=3.8
conda activate patchgame

We recommend installing the latest pytorch and torchvision packages You can install them using

conda install pytorch torchvision -c pytorch

Make sure the following requirements are met

  • torch>=1.8.1
  • torchvision>=0.9.1

Installing torchsort

Note we only tried installing torchsort with following cuda==10.2.89 and gcc==6.3.0.

export TORCH_CUDA_ARCH_LIST="Pascal;Volta;Turing"
unzip torchsort.zip && cd torchsort
python setup.py install --user
cd .. && rm -rf torchsort

Dataset

We use ImageNet-1k (ILSVRC2012) data in all our experiments. Please download and save the data from the official website.

Training

To train the model(s) in the paper on 1-8 GPUs, run this command (where nproc_per_node is the number of gpus):

python -m torch.distributed.launch --nproc_per_node=1 train.py \
    --data_path /patch/to/imagenet/dir/train \
    --output_dir /path/to/checkpoint/dir \
    --patch_size 32 --epochs 100

Pre-trained Models

You can download pretrained models here trained on ImageNet using parameters using above command (and default hyperparameters).

Evaluation

PatchRank with ViT

python eval_patchrank.py --patch-model mymodel.pth --data-path <path to dataset> --topk <no. of patches to use>

This achieves the following accuracy on ImageNet.

Model name Top 1 Accuracy Top 5 Accuracy
PatchGame(S=32, topk=75, size=384x384) 58.4% 80.9%

k-NN classification ImageNet with listener's vision module

python -m torch.distributed.launch --nproc_per_node=1 eval_knn.py \
    --pretrained_weights /path/to/checkpoint/dir/checkpoint.pth \
    --arch resnet18 --nb_knn 20 \
    --batch_size_per_gpu 1024 --use_cuda 0 \
    --data_path /patch/to/imagenet/dir

This achieves the following accuracy on ImageNet

Model name Top 1 Accuracy Top 5 Accuracy
PatchGame(S=32) 30.3% 49.9%

Acknowledgements

We would like to thank several public repos from where we borrowed various utilities

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022