PyTorch reimplementation of minimal-hand (CVPR2020)

Overview

Minimal Hand Pytorch

Unofficial PyTorch reimplementation of minimal-hand (CVPR2020).

demo demo

you can also find in youtube or bilibili

This project reimplement following components :

  1. Training (DetNet) and Evaluation Code
  2. Shape Estimation
  3. Pose Estimation: Instead of IKNet in original paper, an analytical inverse kinematics method is used.

Offical project link: [minimal-hand]

Update

  • 2021/03/09 update about utils/LM.py, time cost drop from 12s/item to 1.57s/item

  • 2021/03/12 update about utils/LM.py, time cost drop from 1.57s/item to 0.27s/item

  • 2021/03/17 realtime perfomance is achieved when using PSO to estimate shape, coming soon

  • 2021/03/20 Add PSO to estimate shape. AUC is decreased by about 0.01 on STB and RHD datasets, and increased a little on EO and do datasets. Modifiy utlis/vis.py to improve realtime perfomance

  • 2021/03/24 Fixed some errors in calculating AUC. Update the 3D PCK AUC Diffenence.

Usage

  • Retrieve the code
git clone https://github.com/MengHao666/Minimal-Hand-pytorch
cd Minimal-Hand-pytorch
  • Create and activate the virtual environment with python dependencies
conda env create --file=environment.yml
conda activate minimal-hand-torch

Prepare MANO hand model

  1. Download MANO model from here and unzip it.

  2. Create an account by clicking Sign Up and provide your information

  3. Download Models and Code (the downloaded file should have the format mano_v*_*.zip). Note that all code and data from this download falls under the MANO license.

  4. unzip and copy the content of the models folder into the mano folder

  5. Your structure should look like this:

Minimal-Hand-pytorch/
   mano/
      models/
      webuser/

Download and Prepare datasets

Training dataset

Evaluation dataset

Processing

  • Create a data directory, extract all above datasets or additional materials in it

Now your data folder structure should like this:

data/

    CMU/
        hand143_panopticdb/
            datasets/
            ...
        hand_labels/
            datasets/
            ...

    RHD/
        RHD_published_v2/
            evaluation/
            training/
            view_sample.py
            ...

    GANeratedHands_Release/
        data/
        ...

    STB/
        images/
            B1Counting/
                SK_color_0.png
                SK_depth_0.png
                SK_depth_seg_0.png  <-- merged from STB_supp
                ...
            ...
        labels/
            B1Counting_BB.mat
            ...

    dexter+object/
        calibration/
        bbox_dexter+object.csv
        DO_pred_2d.npy
        data/
            Grasp1/
                annotations/
                    Grasp13D.txt
                    my_Grasp13D.txt
                    ...
                ...
            Grasp2/
                annotations/
                    Grasp23D.txt
                    my_Grasp23D.txt
                    ...
                ...
            Occlusion/
                annotations/
                    Occlusion3D.txt
                    my_Occlusion3D.txt
                    ...
                ...
            Pinch/
                annotations/
                    Pinch3D.txt
                    my_Pinch3D.txt
                    ...
                ...
            Rigid/
                annotations/
                    Rigid3D.txt
                    my_Rigid3D.txt
                    ...
                ...
            Rotate/
                                annotations/
                    Rotate3D.txt
                    my_Rotate3D.txt
                    ...
                ...
        

    EgoDexter/
        preview/
        data/
            Desk/
                annotation.txt_3D.txt
                my_annotation.txt_3D.txt
                ...
            Fruits/
                annotation.txt_3D.txt
                my_annotation.txt_3D.txt
                ...
            Kitchen/
                annotation.txt_3D.txt
                my_annotation.txt_3D.txt
                ...
            Rotunda/
                annotation.txt_3D.txt
                my_annotation.txt_3D.txt
                ...
        

Note

  • All code and data from these download falls under their own licenses.
  • DO represents "dexter+object" dataset; EO represents "EgoDexter" dataset
  • DO_supp and EO_supp are modified from original ones.
  • DO_pred_2d.npy are 2D predictions from 2D part of DetNet.
  • some labels of DO and EO is obviously wrong (u could find some examples with original labels from dexter_object.py or egodexter.py), when projected into image plane, thus should be omitted. Here come my_{}3D.txt and my_annotation.txt_3D.txt.

Download my Results

realtime demo

python demo.py

DetNet Training and Evaluation

Run the training code

python train_detnet.py --data_root data/

Run the evaluation code

python train_detnet.py --data_root data/  --datasets_test testset_name_to_test   --evaluate  --evaluate_id checkpoints_id_to_load 

or use my results

python train_detnet.py --checkpoint my_results/checkpoints  --datasets_test "rhd" --evaluate  --evaluate_id 106

python train_detnet.py --checkpoint my_results/checkpoints  --datasets_test "stb" --evaluate  --evaluate_id 71

python train_detnet.py --checkpoint my_results/checkpoints  --datasets_test "do" --evaluate  --evaluate_id 68

python train_detnet.py --checkpoint my_results/checkpoints  --datasets_test "eo" --evaluate  --evaluate_id 101

Shape Estimation

Run the shape optimization code. This can be very time consuming when the weight parameter is quite small.

python optimize_shape.py --weight 1e-5

or use my results

python optimize_shape.py --path my_results/out_testset/

Pose Estimation

Run the following code which uses a analytical inverse kinematics method.

python aik_pose.py

or use my results

python aik_pose.py --path my_results/out_testset/

Detnet training and evaluation curve

Run the following code to see my results

python plot.py --path my_results/out_loss_auc

(AUC means 3D PCK, and ACC_HM means 2D PCK) teaser

3D PCK AUC Diffenence

* means this project

Dataset DetNet(paper) DetNet(*) DetNet+IKNet(paper) DetNet+LM+AIK(*) DetNet+PSO+AIK(*)
RHD - 0.9339 0.856 0.9301 0.9310
STB 0.891 0.8744 0.898 0.8647 0.8671
DO 0.923 0.9378 0.948 0.9392 0.9342
EO 0.804 0.9270 0.811 0.9288 0.9277

Note

  • Adjusting training parameters carefully, longer training time, more complicated network or Biomechanical Constraint Losses could further boost accuracy.
  • As there is no official open source of original paper, above comparison is a little rough.

Citation

This is the unofficial pytorch reimplementation of the paper "Monocular Real-time Hand Shape and Motion Capture using Multi-modal Data" (CVPR 2020).

If you find the project helpful, please star this project and cite them:

@inproceedings{zhou2020monocular,
  title={Monocular Real-time Hand Shape and Motion Capture using Multi-modal Data},
  author={Zhou, Yuxiao and Habermann, Marc and Xu, Weipeng and Habibie, Ikhsanul and Theobalt, Christian and Xu, Feng},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={0--0},
  year={2020}
}

Acknowledgement

  • Code of Mano Pytorch Layer was adapted from manopth.

  • Code for evaluating the hand PCK and AUC in utils/eval/zimeval.py was adapted from hand3d.

  • Part code of data augmentation, dataset parsing and utils were adapted from bihand and 3D-Hand-Pose-Estimation.

  • Code of network model was adapted from Minimal-Hand.

  • @Mrsirovo for the starter code of the utils/LM.py, @maitetsu update it later.

  • @maitetsu for the starter code of the utils/AIK.py

Owner
Hao Meng
Master student at Beihang University , mainly interested in hand pose estimation. (LOOKING FOR RESEARCH INTERNSHIP NOW.)
Hao Meng
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

Secondmind Labs 107 Nov 02, 2022
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023