HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

Related tags

Deep LearningHHP-Net
Overview

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federico Tomenotti - WACV 2022

Abstract: In this paper we introduce a novel method to estimate the head pose of people in single images starting from a small set of head keypoints. To this purpose, we propose a regression model that exploits keypoints and outputs the head pose represented by yaw, pitch, and roll. Our model is simple to implement and more efficient with respect to the state of the art -- faster in inference and smaller in terms of memory occupancy -- with comparable accuracy. Our method also provides a measure of the heteroscedastic uncertainties associated with the three angles, through an appropriately designed loss function. As an example application, we address social interaction analysis in images: we propose an algorithm for a quantitative estimation of the level of interaction between people, starting from their head poses and reasoning on their mutual positions. ArXiv

Any questions or discussions are welcomed!

Installation

To download the repository:

git clone https://github.com/cantarinigiorgio/HHP-Net

To install the requirements:

pip install -r requirements.txt

Network architecture

Demo

There are different choices for the key points detector: in this repository we propose two variants

  • a normal version, very precise but less efficient
  • a faster version less accurate but faster

Normal version

We test three different backbones of CenterNet (HourGlass104, Resnet50V2 and Resnet50V1 available in the TensorFlow 2 Detection Model Zoo); each model takes as input 512x512 images.

Download one of the previous model (e.g. HourGlass104) then extract it to HHP-Net/centernet/ with:

tar -zxvf centernet_hg104_512x512_kpts_coco17_tpu-32.tar.gz -C /HHP-Net/centernet

To make inference on a single image, run:

python inference_on_image.py [--detection-model PATH_DETECTION_MODEL] [--hhp-model PATH_HHPNET] [--image PATH_IMAGE]  

To make inference on frames from the webcam, run:

python inference_on_webcam.py [--detection-model PATH_DETECTION_MODEL] [--hhp-model PATH_HHPNET] 

Faster version

To estimate the keypoints firstly we use an object detection model for detecting people; then we exploit a model to estimate the pose of each people detected by the previous model in the image.

In order to detect people we test Centernet MobilenetV2: download it and then extract it to HHP-Net/centernet/:

tar -zxvf centernet_mobilenetv2fpn_512x512_coco17_od.tar.gz -C /HHP-Net/centernet

Then download Posenet for pose estimation and move to HHP-Net/posenet/

mv posenet_mobilenet_v1_100_257x257_multi_kpt_stripped.tflite HHP-Net/posenet/

To make inference on a single image, run:

python fast_inference_on_image.py [--detection-model PATH_MODEL_DETECTION] [--pose-model PATH_MODEL_POSE] [--hhp-model PATH_HHPNET] [--image PATH_IMAGE] 

To make inference on frames from the webcam, run:

python fast_inference_on_webcam.py [--detection-model PATH_MODEL_DETECTION] [--pose-model PATH_MODEL_POSE] [--hhp-model PATH_HHPNET] 

Citation

If you find this code useful for your research, please use the following BibTeX entry.

@misc{cantarini2021hhpnet,
      title={HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty}, 
      author={Giorgio Cantarini and Federico Figari Tomenotti and Nicoletta Noceti and Francesca Odone},
      year={2021},
      eprint={2111.01440},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Code Author

  • Giorgio Cantarini - Imavis s.r.l. and Malga (Machine Learning Genoa Center)
Owner
Computer Vision Engineer at Imavis s.r.l.
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 03, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023