SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Overview

Datasets | Website | Raw Data | OpenReview

SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Christopher Yeh, Chenlin Meng, Sherrie Wang, Anne Driscoll, Erik Rozi, Patrick Liu, Jihyeon Lee, Marshall Burke, David B. Lobell, Stefano Ermon

California Institute of Technology, Stanford University, and UC Berkeley

SustainBench is a collection of 15 benchmark tasks across 7 SDGs, including tasks related to economic development, agriculture, health, education, water and sanitation, climate action, and life on land. Datasets for 11 of the 15 tasks are released publicly for the first time. Our goals for SustainBench are to

  1. lower the barriers to entry for the machine learning community to contribute to measuring and achieving the SDGs;
  2. provide standard benchmarks for evaluating machine learning models on tasks across a variety of SDGs; and
  3. encourage the development of novel machine learning methods where improved model performance facilitates progress towards the SDGs.

Table of Contents

Overview

SustainBench provides datasets and standardized benchmarks for 15 SDG-related tasks, listed below. Details for each dataset and task can be found in our paper and on our website. The raw data can be downloaded from Google Drive and is released under a CC-BY-SA 4.0 license.

  • SDG 1: No Poverty
    • Task 1A: Predicting poverty over space
    • Task 1B: Predicting change in poverty over time
  • SDG 2: Zero Hunger
  • SDG 3: Good Health and Well-being
  • SDG 4: Quality Education
    • Task 4A: Women educational attainment
  • SDG 6: Clean Water and Sanitation
  • SDG 13: Climate Action
  • SDG 15: Life on Land
    • Task 15A: Feature learning for land cover classification
    • Task 15B: Out-of-domain land cover classification

Dataloaders

For each dataset, we provide Python dataloaders that load the data as PyTorch tensors. Please see the sustainbench folder as well as our website for detailed documentation.

Running Baseline Models

We provide baseline models for many of the benchmark tasks included in SustainBench. See the baseline_models folder for the code and detailed instructions to reproduce our results.

Dataset Preprocessing

11 of the 15 SustainBench benchmark tasks involve data that is being publicly released for the first time. We release the processed versions of our datasets on Google Drive. However, we also provide code and detailed instructions for how we preprocessed the datasets in the dataset_preprocessing folder. You do NOT need anything from the dataset_preprocessing folder for downloading the processed datasets or running our baseline models.

Computing Requirements

This code was tested on a system with the following specifications:

  • operating system: Ubuntu 16.04.7 LTS
  • CPU: Intel(R) Xeon(R) CPU E5-2620 v4
  • memory (RAM): 125 GB
  • disk storage: 5 TB
  • GPU: NVIDIA P100 GPU

The main software requirements are Python 3.7 with TensorFlow r1.15, PyTorch 1.9, and R 4.1. The complete list of required packages and library are listed in the two conda environment YAML files (env_create.yml and env_bench.yml), which are meant to be used with conda (version 4.10). See here for instructions on installing conda via Miniconda. Once conda is installed, run one of the following commands to set up the desired conda environment:

conda env update -f env_create.yml --prune
conda env update -f env_bench.yml --prune

The conda environment files default to CPU-only packages. If you have a GPU, please comment/uncomment the appropriate lines in the environment files; you may need to also install CUDA 10 or 11 and cuDNN 7.

Code Formatting and Type Checking

This repo uses flake8 for Python linting and mypy for type-checking. Configuration files for each are included in this repo: .flake8 and mypy.ini.

To run either code linting or type checking, set the current directory to the repo root directory. Then run any of the following commands:

# LINTING
# =======

# entire repo
flake8

# all modules within utils directory
flake8 utils

# a single module
flake8 path/to/module.py

# a jupyter notebook - ignore these error codes, in addition to the ignored codes in .flake8:
# - E305: expected 2 blank lines after class or function definition
# - E402: Module level import not at top of file
# - F404: from __future__ imports must occur at the beginning of the file
# - W391: Blank line at end of file
jupyter nbconvert path/to/notebook.ipynb --stdout --to script | flake8 - --extend-ignore=E305,E402,F404,W391


# TYPE CHECKING
# =============

# entire repo
mypy .

# all modules within utils directory
mypy -p utils

# a single module
mypy path/to/module.py

# a jupyter notebook
mypy -c "$(jupyter nbconvert path/to/notebook.ipynb --stdout --to script)"

Citation

Please cite this article as follows, or use the BibTeX entry below.

C. Yeh, C. Meng, S. Wang, A. Driscoll, E. Rozi, P. Liu, J. Lee, M. Burke, D. B. Lobell, and S. Ermon, "SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning," in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), Dec. 2021. [Online]. Available: https://openreview.net/forum?id=5HR3vCylqD.

@inproceedings{
    yeh2021sustainbench,
    title = {{SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning}},
    author = {Christopher Yeh and Chenlin Meng and Sherrie Wang and Anne Driscoll and Erik Rozi and Patrick Liu and Jihyeon Lee and Marshall Burke and David B. Lobell and Stefano Ermon},
    booktitle = {Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
    year = {2021},
    month = {12},
    url = {https://openreview.net/forum?id=5HR3vCylqD}
}
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

631 Jan 04, 2023
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank NoƩ and co-workers) 50 Dec 16, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022