Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

Overview

scalableMARL

Scalable Reinforcement Learning Policies for Multi-Agent Control

CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Learning Policies for Multi-Agent Control". IEEE International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021.

Multi-Agent Reinforcement Learning method to learn scalable control polices for multi-agent target tracking.

  • Author: Christopher Hsu
  • Email: [email protected]
  • Affiliation:
    • Department of Electrical and Systems Engineering
    • GRASP Laboratory
    • @ University of Pennsylvania

Currently supports Python3.8 and is developed in Ubuntu 20.04

scalableMARL file structure

Within scalableMARL (highlighting the important files):

scalableMARL
    |___algos
        |___maTT                          #RL alg folder for the target tracking environment
            |___core                      #Self-Attention-based Model Architecture
            |___core_behavior             #Used for further evaluation (Ablation D.2.)
            |___dql                       #Soft Double Q-Learning
            |___evaluation                #Evaluation for Main Results
            |___evaluation_behavior       #Used for further evaluation (Ablation D.2.)
            |___modules                   #Self-Attention blocks
            |___replay_buffer             #RL replay buffer for sets
            |___run_script                #**Main run script to do training and evaluation
    |___envs
        |___maTTenv                       #multi-agent target tracking
            |___env
                |___setTracking_v0        #Standard environment (i.e. 4a4t tasks)
                |___setTracking_vGreedy   #Baseline Greedy Heuristic
                |___setTracking_vGru      #Experiment with Gru (Ablation D.3)
                |___setTracking_vkGreedy  #Experiment with Scalability and Heuristic Mask k=4 (Ablation D.1)
        |___run_ma_tracking               #Example scipt to run environment
    |___setup                             #set PYTHONPATH ($source setup)
  • To setup scalableMARL, follow the instruction below.

Set up python environment for the scalableMARL repository

Install python3.8 (if it is not already installed)

#to check python version
python3 -V

sudo apt-get update
sudo apt-get install python3.8-dev

Set up virtualenv

Python virtual environments are used to isolate package installation from the system

Replace 'virtualenv name' with your choice of folder name

sudo apt-get install python3-venv 

python3 -m venv --system-site-packages ./'virtualenv name'
# Activate the environment for use, any commands now will be done within this venv
source ./'virtualenv name'/bin/activate

# To deactivate (in terminal, exit out of venv), do not use during setup
deactivate

Now that the virtualenv is activated, you can install packages that are isolated from your system

When the venv is activated, you can now install packages and run scripts

Install isolated packages in your venv

sudo apt-get install -y eog python3-tk python3-yaml python3-pip ssh git

#This command will auto install packages from requirements.txt
pip3 install --trusted-host pypi.python.org -r requirements.txt

Current workflow

Setup repos

# activate virtualenv
source ./'virtualenv name'/bin/activate
# change directory to scalableMARL
cd ./scalableMARL
# setup repo  ***important in order to set PYTHONPATH***
source setup

scalableMARL repo is ready to go

Running an algorithm (for example maPredPrey)

# its best to run from the scalableMARL folder so that logging and saving is consistent
cd ./scalableMARL
# run the alg
python3 algos/maTT/run_script.py

# you can run the alg with different argument parameters. See within run_script for more options.
# for example
python3 algos/maTT/run_script.py --seed 0 --logdir ./results/maPredPrey --epochs 40

To test, evaluate, and render()

# for a general example 
python3 algos/maTT/run_script.py --mode test --render 1 --log_dir ./results/maTT/setTracking-v0_123456789/seed_0/ --nb_test_eps 50
# for a saved policy in saved_results
python3 algos/maTT/run_script.py --mode test --render 1 --log_dir ./saved_results/maTT/setTracking-v0_123456789/seed_0/

To see training curves

tensorboard --logdir ./results/maTT/setTracking-v0_123456789/

Citing scalableMARL

If you reference or use scalableMARL in your research, please cite:

@misc{hsu2021scalable,
      title={Scalable Reinforcement Learning Policies for Multi-Agent Control}, 
      author={Christopher D. Hsu and Heejin Jeong and George J. Pappas and Pratik Chaudhari},
      year={2021},
      eprint={2011.08055},
      archivePrefix={arXiv},
      primaryClass={cs.MA}
}

Owner
Christopher Hsu
Christopher Hsu
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen

Boxi Cao 30 Oct 24, 2022
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi

19 Oct 11, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022