Pytorch library for seismic data augmentation

Overview

Logo

seismic-augmentation

Pytorch library for seismic data augmentation

Setup

pip install --upgrade git+https://github.com/IMGW-univie/seismic-augmentation.git

Usage example

import torch
from seismic_augmentation.composition import Compose
from seismic_augmentation.augmentations import *

aug = Compose([
         FlipChannels(init_channel_order='ZNE'),
         AddRandomNoise(snr_level_db=-10),
         RandomLowPassFilter(cutoff_freq_range=[1,10]),
         RandomHighPassFilter(cutoff_freq_range=[3,14]),
         Taper(max_percentage=0.5, max_length=10),
         PolarityChange(),
         Normalize()
         ],  
         p=0.5)

transformed = aug(data=waveform, sample_rate=30)

Contribute

Contributors welcome!

Documentation

For now this library is very simple

FlipChannels(init_channel_order='ZNE')
'''
Swaps N and E channels. Easiest way to change azimuth of a signal

init_channel_order - ordering of the channels of your seismic data
'''
AddRandomNoise(snr_level_db=-10)
'''
Adds random noise with desired SNR

snr_level_db - desired signal to noise ratio after augmentation
'''
RandomLowPassFilter(cutoff_freq_range=[1,10])
'''
Applies Low Pass Filter with a random cutoff frequency

cutoff_freq_range - range of possible cutoff frequencies
'''
RandomHighPassFilter(cutoff_freq_range=[1,10])
'''
Applies High Pass Filter with a random cutoff frequency

cutoff_freq_range - range of possible cutoff frequencies
'''
LowPassFilter(cutoff_freq=9.)
'''
Applies Low Pass Filter with a desired cutoff frequency

cutoff_freq - desired cutoff frequency
'''
HighPassFilter(cutoff_freq=9.)
'''
Applies High Pass Filter with a desired cutoff frequency

cutoff_freq - desired cutoff frequency
'''
Taper(max_percentage=0.5, max_length=10)
'''
Applies a taper with specified parameters

max_percentage - how strongly the signal is suppresed
max_length - maximum length of a taper in samples
'''
PolarityChange()
'''
Flips polarity of the signal
'''
Normalize()
'''
Global normalization of 3-channel signal
'''

p - probability that an augmentation would be applied

Inspiration

Highly inspired by Facebook Augly

Owner
Artemii Novoselov
PhD Candidate in University of Vienna. Geophysicist
Artemii Novoselov
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
VR-Caps: A Virtual Environment for Active Capsule Endoscopy

VR-Caps: A Virtual Environment for Capsule Endoscopy Overview We introduce a virtual active capsule endoscopy environment developed in Unity that prov

DeepMIA Lab 90 Dec 27, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My moti

Abhinav Gupta 1 Nov 19, 2021