TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

Overview

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?

Open In Colab


A TensorFlow implementation of TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? [1]. In this paper, an earlier version of which is presented at NeurIPS 2021 [2], the authors suggest an adaptive token learning algorithm that makes ViT computationally much more efficient (in terms of FLOPs) and also increases downstream accuracy (here classification accuracy). Experimenting with CIFAR-10 we reduce the number of pathces from 64 to 4 (number of adaptively learned tokens) and also report a boost in the accuracy. We experiment with different hyperparameters and report results which aligns with the literature.

With and Without TokenLearner

We report results training our mini ViT with and without the vanilla TokenLearner module here. You can find the vanilla Token Learner module in the TokenLearner.ipynb notebook.

TokenLearner # tokens in
TokenLearner
Top-1 Acc
(Averaged across 5 runs)
GFLOPs TensorBoard
N - 56.112% 0.0184 Link
Y 8 56.55% 0.0153 Link
N - 56.37% 0.0184 Link
Y 4 56.4980% 0.0147 Link
N - (# Transformer layers: 8) 55.36% 0.0359 Link

TokenLearner v1.1

We have also implemented the Token Learner v11 module which aligns with the official implementation. The Token Learner v11 module can be found in the TokenLearner-V1.1.ipynb notebook. The results training with this module are as follows:

# Groups # Tokens Top-1 Acc GFLOPs TensorBoard
4 4 54.638% 0.0149 Link
8 8 54.898% 0.0146 Link
4 8 55.196% 0.0149 Link

We acknowledge that the results with this new TokenLearner module are slightly off than expected and this might mitigate with hyperparameter tuning.

Note: To compute the FLOPs of our models we use this utility from this repository.

Acknowledgements

References

[1] TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?; Ryoo et al.; arXiv 2021; https://arxiv.org/abs/2106.11297

[2] TokenLearner: Adaptive Space-Time Tokenization for Videos; Ryoo et al., NeurIPS 2021; https://openreview.net/forum?id=z-l1kpDXs88

Owner
Aritra Roy Gosthipaty
Learning with a learning rate of 1e-10. Deep Learning Associate at @pyimagesearch.
Aritra Roy Gosthipaty
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022