The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

Related tags

Deep LearningF-Clip
Overview

F-Clip — Fully Convolutional Line Parsing

This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

Introduction

Our method (F-Clip) is a simple and effective neural network for detecting the line from a given image and video. It outperforms the previous state-of-the-art wireframe and line detectors by a large margin on both accuracy and speed. We hope that this repository serves as a new reproducible baseline for future researches in this area.

Main results

The accuracy and speed trade-off among most recent wireframe detection methods on ShanghaiTech dataset

Qualitative Measures

More random sampled results can be found in the paper.

Quantitative Measures

The following table reports the performance metrics of several wireframes and line detectors on the ShanghaiTech dataset.

Reproducing Results

Installation

For the ease of reproducibility, you are suggested to install miniconda (or anaconda if you prefer) before following executing the following commands.

git clone https://github.com/Delay-Xili/F-Clip
cd F-Clip
conda create -y -n fclip
source activate fclip
# Replace cudatoolkit=10.1 with your CUDA version: https://pytorch.org/
conda install -y pytorch cudatoolkit=10.1 -c pytorch
conda install -y pyyaml docopt matplotlib scikit-image opencv
mkdir data logs post

Testing Pre-trained Models

You can download our reference 6 pre-trained models HG1_D2, HG1_D3, HG1, HG2, HG2_LB, and HR from Google Drive. Those models were trained with their corresponding settings config/fclip_xxx.yaml.
To generate wireframes on the validation dataset with the pretrained model, execute

python test.py -d 0 -i <directory-to-storage-results> config/fclip_xxx.yaml <path-to-xxx-ckpt-file> shanghaiTech/york <path-to-validation-set>

Detect Wireframes for Your Own Images or Videos

To test F-Clip on your own images or videos, you need to download the pre-trained models and execute

CUDA_VISIBLE_DEVICES=0 python demo.py <path-to-image-or-video> --model HR --output_dir logs/demo_result --ckpt <path-to-pretrained-pth> --display True

Here, --output_dir is specifying the directory where the results will store, and you can specify --display to see the results on time.

Downloading the Processed Dataset

You can download the processed dataset wireframe.zip and york.zip manually from Google Drive (link1, link2).

Processing the Dataset

Optionally, you can pre-process (e.g., generate heat maps, do data augmentation) the dataset from scratch rather than downloading the processed one.

dataset/wireframe.py data/wireframe_raw data/wireframe
dataset/wireframe_line.py data/wireframe_raw data/wireframe

Evaluation

To evaluate the sAP (recommended) of all your checkpoints under logs/, execute

python eval-sAP.py logs/*/npz/*

MATLAB is required for APH evaluation and matlab should be under your $PATH. The parallel computing toolbox is highly suggested due to the usage of parfor. After post processing, execute

python eval-APH.py pth/to/input/npz pth/to/output/dir

Due to the usage of pixel-wise matching, the evaluation of APH may take up to an hour depending on your CPUs. See the source code of eval-sAP.py, eval-APH.py, and FClip/postprocess.py for more details on evaluation.

Training

To train the neural network on GPU 0 (specified by -d 0) with the different 6 parameters, execute

python train.py -d 0 -i HG1_D2 config/fclip_HG1_D2.yaml
python train.py -d 0 -i HG1_D3 config/fclip_HG1_D3.yaml
python train.py -d 0 -i HG1 config/fclip_HG1.yaml
python train.py -d 0 -i HG2 config/fclip_HG2.yaml
python train.py -d 0 -i HG2_LB config/fclip_HG2_LB.yaml
python train.py -d 0 -i HR config/fclip_HR.yaml

Citation

If you find F-Clip useful in your research, please consider citing:

@inproceedings{dai2021fully,
 author={Xili Dai, Xiaojun Yuan, Haigang Gong, and Yi Ma},
 title={Fully Convolutional Line Parsing},
 journal={CoRR},
 year={2021}
}
Owner
Xili Dai
UC Berkeley, California, USA. [email protected]
Xili Dai
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
PyTorch implementation of DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration (BMVC 2021)

DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration [video] [paper] [supplementary] [data] [thesis] Introduction De

Natalie Lang 10 Dec 14, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022