PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Overview

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Stanford University.

prediction example

Introduction

This work is based on our arXiv tech report, which is going to appear in CVPR 2017. We proposed a novel deep net architecture for point clouds (as unordered point sets). You can also check our project webpage for a deeper introduction.

Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds, which well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective.

In this repository, we release code and data for training a PointNet classification network on point clouds sampled from 3D shapes, as well as for training a part segmentation network on ShapeNet Part dataset.

Citation

If you find our work useful in your research, please consider citing:

@article{qi2016pointnet,
  title={PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation},
  author={Qi, Charles R and Su, Hao and Mo, Kaichun and Guibas, Leonidas J},
  journal={arXiv preprint arXiv:1612.00593},
  year={2016}
}

Installation

Install TensorFlow. You may also need to install h5py. The code has been tested with Python 2.7, TensorFlow 1.0.1, CUDA 8.0 and cuDNN 5.1 on Ubuntu 14.04.

If you are using PyTorch, you can find a third-party pytorch implementation here.

To install h5py for Python:

sudo apt-get install libhdf5-dev
sudo pip install h5py

Usage

To train a model to classify point clouds sampled from 3D shapes:

python train.py

Log files and network parameters will be saved to log folder in default. Point clouds of ModelNet40 models in HDF5 files will be automatically downloaded (416MB) to the data folder. Each point cloud contains 2048 points uniformly sampled from a shape surface. Each cloud is zero-mean and normalized into an unit sphere. There are also text files in data/modelnet40_ply_hdf5_2048 specifying the ids of shapes in h5 files.

To see HELP for the training script:

python train.py -h

We can use TensorBoard to view the network architecture and monitor the training progress.

tensorboard --logdir log

After the above training, we can evaluate the model and output some visualizations of the error cases.

python evaluate.py --visu

Point clouds that are wrongly classified will be saved to dump folder in default. We visualize the point cloud by rendering it into three-view images.

If you'd like to prepare your own data, you can refer to some helper functions in utils/data_prep_util.py for saving and loading HDF5 files.

Part Segmentation

To train a model for object part segmentation, firstly download the data:

cd part_seg
sh download_data.sh

The downloading script will download ShapeNetPart dataset (around 1.08GB) and our prepared HDF5 files (around 346MB).

Then you can run train.py and test.py in the part_seg folder for training and testing (computing mIoU for evaluation).

License

Our code is released under MIT License (see LICENSE file for details).

Selected Projects that Use PointNet

Owner
Charles R. Qi
AI Researcher. PhD from Stanford University. Focus: deep learning, computer vision and 3D.
Charles R. Qi
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202

CompVis Heidelberg 135 Dec 28, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i

23 Jul 02, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022