TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

Overview

TalkingHead-1KH Dataset

Python 3.7 License CC Format MP4 Resolution 512×512 Videos 500k

TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid:

One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing
Ting-Chun Wang (NVIDIA), Arun Mallya (NVIDIA), Ming-Yu Liu (NVIDIA)
https://nvlabs.github.io/face-vid2vid/
https://arxiv.org/abs/2011.15126.pdf

The dataset consists of 500k video clips, of which about 80k are greater than 512x512 resolution. Only videos under permissive licenses are included. Note that the number of videos differ from that in the original paper because a more robust preprocessing script was used to split the videos. For business inquiries, please visit our website and submit the form: NVIDIA Research Licensing.

Download

Unzip the video metadata

First, unzip the metadata and put it under the root directory:

unzip data_list.zip

Unit test

This step downloads a small subset of the dataset to verify the scripts are working on your computer. You can also skip this step if you want to directly download the entire dataset.

bash videos_download_and_crop.sh small

The processed clips should appear in small/cropped_clips.

Download the entire dataset

Please run

bash videos_download_and_crop.sh train

The script will automatically download the YouTube videos, split them into short clips, and then crop and trim them to include only the face regions. The final processed clips should appear in train/cropped_clips.

Evaluation

To download the evaluation set which consists of only 1080p videos, please run

bash videos_download_and_crop.sh val

The processed clips should appear in val/cropped_clips.

We also provide the reconstruction results synthesized by our model here. For each video, we use only the first frame to reconstruct all the following frames.

Furthermore, for models trained using the VoxCeleb2 dataset, we also provide comparisons using another model trained on the VoxCeleb2 dataset. Please find the reconstruction results here.

Licenses

The individual videos were published in YouTube by their respective authors under Creative Commons BY 3.0 license. The metadata file, the download script file, the processing script file, and the documentation file are made available under MIT license. You can use, redistribute, and adapt it, as long as you (a) give appropriate credit by citing our paper, (b) indicate any changes that you've made, and (c) distribute any derivative works under the same license.

Privacy

When collecting the data, we were careful to only include videos that – to the best of our knowledge – were intended for free use and redistribution by their respective authors. That said, we are committed to protecting the privacy of individuals who do not wish their videos to be included.

If you would like to remove your video from the dataset, you can either

  1. Go to YouTube and change the license of your video, or remove your video entirely.
  2. Contact [email protected]. Please include your YouTube video link in the email.

Acknowledgements

This webpage borrows heavily from the FFHQ-dataset page.

Citation

If you use this dataset for your work, please cite

@inproceedings{wang2021facevid2vid,
  title={One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing},
  author={Ting-Chun Wang and Arun Mallya and Ming-Yu Liu},
  booktitle={CVPR},
  year={2021}
}
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022