Import Python modules from dicts and JSON formatted documents.

Overview

Paker

Build Version Version

Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter.

Important: Since v0.6.0 paker supports importing .pyd and .dll modules directly from memory. This was achieved by using _memimporter from py2exe project. Importing .so files on Linux still requires writing them to disk.

Installation

From PyPI

pip install paker -U

From source

git clone https://github.com/desty2k/paker.git
cd paker
pip install .

Usage

In Python script

You can import Python modules directly from string, dict or bytes (without disk IO).

import paker
import logging

MODULE = {"somemodule": {"type": "module", "extension": "py", "code": "fun = lambda x: x**2"}}
logging.basicConfig(level=logging.NOTSET)

if __name__ == '__main__':
    with paker.loads(MODULE) as loader:
        # somemodule will be available only in this context
        from somemodule import fun
        assert fun(2), 4
        assert fun(5), 25
        print("6**2 is {}".format(fun(6)))
        print("It works!")

To import modules from .json files use load function. In this example paker will serialize and import mss package.

import paker
import logging

file = "mss.json"
logging.basicConfig(level=logging.NOTSET)

# install mss using `pip install mss`
# serialize module
with open(file, "w+") as f:
    paker.dump("mss", f, indent=4)

# now you can uninstall mss using `pip uninstall mss -y`
# load package back from dump file
with open(file, "r") as f:
    loader = paker.load(f)

import mss
with mss.mss() as sct:
    sct.shot()

# remove loader and clean the cache
loader.unload()

try:
    # this will throw error
    import mss
except ImportError:
    print("mss unloaded successfully!")

CLI

Paker can also work as a standalone script. To dump module to JSON dict use dump command:

paker dump mss

To recreate module from JSON dict use load:

paker load mss.json

Show all modules and packages in .json file

paker list mss.json

How it works

When importing modules or packages Python iterates over importers in sys.meta_path and calls find_module method on each object. If the importer returns self, it means that the module can be imported and None means that importer did not find searched package. If any importer has confirmed the ability to import module, Python executes another method on it - load_module. Paker implements its own importer called jsonimporter, which instead of searching for modules in directories, looks for them in Python dictionaries

To dump module or package to JSON document, Paker recursively iterates over modules and creates dict with code and type of each module and submodules if object is package.

You might also like...
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

Comments
  • psutil example exits with module not found when using _memimporter

    psutil example exits with module not found when using _memimporter

    I pulled latest releases zip file, ran python setup.py build and attempted to run the psutil example with the compiled pyd. This resulted in the following error:

    DEBUG:jsonimporter:searching for pwd
    DEBUG:jsonimporter:searching for psutil._common
    INFO:jsonimporter:psutil._common has been imported successfully
    DEBUG:jsonimporter:searching for psutil._compat
    INFO:jsonimporter:psutil._compat has been imported successfully
    DEBUG:jsonimporter:searching for psutil._pswindows
    DEBUG:jsonimporter:searching for psutil._psutil_windows
    DEBUG:jsonimporter:searching for psutil._psutil_windows
    INFO:jsonimporter:using _memimporter to load '.pyd' file
    INFO:jsonimporter:unloaded all modules
    Traceback (most recent call last):
      File "c:\Users\User\Desktop\paker-0.7.1\paker-0.7.1\build\lib.win-amd64-cpython-310\psutil_example.py", line 20, in <module>
        import psutil
      File "c:\Users\User\Desktop\paker-0.7.1\paker-0.7.1\build\lib.win-amd64-cpython-310\paker\importers\jsonimporter.py", line 115, in load_module
        exec(jsonmod["code"], mod.__dict__)
      File "<string>", line 107, in <module>
      File "c:\Users\User\Desktop\paker-0.7.1\paker-0.7.1\build\lib.win-amd64-cpython-310\paker\importers\jsonimporter.py", line 115, in load_module
        exec(jsonmod["code"], mod.__dict__)
      File "<string>", line 35, in <module>
      File "c:\Users\User\Desktop\paker-0.7.1\paker-0.7.1\build\lib.win-amd64-cpython-310\paker\importers\jsonimporter.py", line 134, in load_module
        mod = _memimporter.import_module(fullname, path, initname, self._get_data, spec)
    ImportError: MemoryLoadLibrary failed loading psutil\_psutil_windows.pyd: The specified module could not be found. (126)
    

    Is this an issue with how I compiled memimporter, or something else?

    opened by rkbennett 1
Releases(v0.7.1)
Owner
Wojciech Wentland
Wojciech Wentland
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022