A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

Related tags

Deep Learninglearnsim
Overview

A variational Bayesian method for similarity learning in non-rigid image registration

We provide the source code and the trained models used in the research presented at CVPR 2022. The model learns in an unsupervised way a data-specific similarity metric for atlas-based non-rigid image registration. The use of a learnt similarity metric parametrised as a neural network yields more accurate results than use of traditional similarity metrics, without a negative impact on the transformation smoothness or image registration speed.

Model

model

Neural network parametrising the similarity metric initialised to SSD. The model consists of a 3D U-Net encoder, which is initialised to the Dirac delta function and followed by a 1D convolutional layer. Feature maps output by the 3D U-Net are used to calculate a weighted sum returned by the aggregation layer. Before training, the output of the neural network approximates the value of SSD. We would like to thank Rhea Jiang from the Harvard Graduate School of Design for the figure.

Results

boxplot

Average surface distances and Dice scores calculated on subcortical structure segmentations when aligning images in the test split using the baseline and learnt similarity metrics. The learnt models show clear improvement over the baselines. We provide details on the statistical significance of the improvement in the paper.

Usage

Set-up

The experiments were run on a system with Ubuntu 20.04.4 and Python 3.8.6. To install the necessary Python libraries run the following command:

pip install requirements.txt

Training

Examples of json files with the model parameters can be found in the folder /configs. Use the following command to train a similarity metric:

CUDA_VISIBLE_DEVICES=<device_ids> python -m torch.distributed.launch --nproc_per_node=<no_gpus> train.py -c <path/to/config.json>

Testing

Use the following command to align images:

CUDA_VISIBLE_DEVICES=<device_id> python -m torch.distributed.launch --nproc_per_node=1 test.py -c <path/to/config.json> -r <path/to/checkpoint.pt>

Pre-trained models

For training and testing, we used brain MRI scans from the UK Biobank. Click on the links below to download the pre-trained models.

Model Baseline Learnt
SSD N/A 12 MB
LCC N/A 22 MB
VXM + SSD 1 MB 1 MB
VXM + LCC 1 MB 1 MB

Citation

If you use this code, please cite our paper.

Daniel Grzech, Mohammad Farid Azampour, Ben Glocker, Julia Schnabel, Nassir Navab, Bernhard Kainz, and Loïc Le Folgoc. A variational Bayesian method for similarity learning in non-rigid image registration. CVPR 2022.

@inproceedings{Grzech2022,
    author = {Grzech, Daniel and Azampour, Mohammad Farid and Glocker, Ben and Schnabel, Julia and Navab, Nassir and Kainz, Bernhard and {Le Folgoc}, Lo{\"{i}}c},
    title = {{A variational Bayesian method for similarity learning in non-rigid image registration}},
    booktitle = {CVPR},
    year = {2022}
}
Owner
daniel grzech
🌊🌊🌊
daniel grzech
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

AdaOPS An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with th

9 Oct 05, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022