Submanifold sparse convolutional networks

Overview

Submanifold Sparse Convolutional Networks

This is the PyTorch library for training Submanifold Sparse Convolutional Networks.

Spatial sparsity

This library brings Spatially-sparse convolutional networks to PyTorch. Moreover, it introduces Submanifold Sparse Convolutions, that can be used to build computationally efficient sparse VGG/ResNet/DenseNet-style networks.

With regular 3x3 convolutions, the set of active (non-zero) sites grows rapidly:
submanifold
With Submanifold Sparse Convolutions, the set of active sites is unchanged. Active sites look at their active neighbors (green); non-active sites (red) have no computational overhead:
submanifold
Stacking Submanifold Sparse Convolutions to build VGG and ResNet type ConvNets, information can flow along lines or surfaces of active points.

Disconnected components don't communicate at first, although they will merge due to the effect of strided operations, either pooling or convolutions. Additionally, adding ConvolutionWithStride2-SubmanifoldConvolution-DeconvolutionWithStride2 paths to the network allows disjoint active sites to communicate; see the 'VGG+' networks in the paper.
Strided Convolution, convolution, deconvolution
Strided Convolution, convolution, deconvolution
From left: (i) an active point is highlighted; a convolution with stride 2 sees the green active sites (ii) and produces output (iii), 'children' of hightlighted active point from (i) are highlighted; a submanifold sparse convolution sees the green active sites (iv) and produces output (v); a deconvolution operation sees the green active sites (vi) and produces output (vii).

Dimensionality and 'submanifolds'

SparseConvNet supports input with different numbers of spatial/temporal dimensions. Higher dimensional input is more likely to be sparse because of the 'curse of dimensionality'.

Dimension Name in 'torch.nn' Use cases
1 Conv1d Text, audio
2 Conv2d Lines in 2D space, e.g. handwriting
3 Conv3d Lines and surfaces in 3D space or (2+1)D space-time
4 - Lines, etc, in (3+1)D space-time

We use the term 'submanifold' to refer to input data that is sparse because it has a lower effective dimension than the space in which it lives, for example a one-dimensional curve in 2+ dimensional space, or a two-dimensional surface in 3+ dimensional space.

In theory, the library supports up to 10 dimensions. In practice, ConvNets with size-3 SVC convolutions in dimension 5+ may be impractical as the number of parameters per convolution is growing exponentially. Possible solutions include factorizing the convolutions (e.g. 3x1x1x..., 1x3x1x..., etc), or switching to a hyper-tetrahedral lattice (see Sparse 3D convolutional neural networks).

Hello World

SparseConvNets can be built either by defining a function that inherits from torch.nn.Module or by stacking modules in a sparseconvnet.Sequential:

import torch
import sparseconvnet as scn

# Use the GPU if there is one, otherwise CPU
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'

model = scn.Sequential().add(
    scn.SparseVggNet(2, 1,
                     [['C', 8], ['C', 8], ['MP', 3, 2],
                      ['C', 16], ['C', 16], ['MP', 3, 2],
                      ['C', 24], ['C', 24], ['MP', 3, 2]])
).add(
    scn.SubmanifoldConvolution(2, 24, 32, 3, False)
).add(
    scn.BatchNormReLU(32)
).add(
    scn.SparseToDense(2, 32)
).to(device)

# output will be 10x10
inputSpatialSize = model.input_spatial_size(torch.LongTensor([10, 10]))
input_layer = scn.InputLayer(2, inputSpatialSize)

msgs = [[" X   X  XXX  X    X    XX     X       X   XX   XXX   X    XXX   ",
         " X   X  X    X    X   X  X    X       X  X  X  X  X  X    X  X  ",
         " XXXXX  XX   X    X   X  X    X   X   X  X  X  XXX   X    X   X ",
         " X   X  X    X    X   X  X     X X X X   X  X  X  X  X    X  X  ",
         " X   X  XXX  XXX  XXX  XX       X   X     XX   X  X  XXX  XXX   "],

        [" XXX              XXXXX      x   x     x  xxxxx  xxx ",
         " X  X  X   XXX       X       x   x x   x  x     x  x ",
         " XXX                X        x   xxxx  x  xxxx   xxx ",
         " X     X   XXX       X       x     x   x      x    x ",
         " X     X          XXXX   x   x     x   x  xxxx     x ",]]


# Create Nx3 and Nx1 vectors to encode the messages above:
locations = []
features = []
for batchIdx, msg in enumerate(msgs):
    for y, line in enumerate(msg):
        for x, c in enumerate(line):
            if c == 'X':
                locations.append([y, x, batchIdx])
                features.append([1])
locations = torch.LongTensor(locations)
features = torch.FloatTensor(features).to(device)

input = input_layer([locations,features])
print('Input SparseConvNetTensor:', input)
output = model(input)

# Output is 2x32x10x10: our minibatch has 2 samples, the network has 32 output
# feature planes, and 10x10 is the spatial size of the output.
print('Output SparseConvNetTensor:', output)

Examples

Examples in the examples folder include

For example:

cd examples/Assamese_handwriting
python VGGplus.py

Setup

Tested with PyTorch 1.3, CUDA 10.0, and Python 3.3 with Conda.

conda install pytorch torchvision cudatoolkit=10.0 -c pytorch # See https://pytorch.org/get-started/locally/
git clone [email protected]:facebookresearch/SparseConvNet.git
cd SparseConvNet/
bash develop.sh

To run the examples you may also need to install unrar:

apt-get install unrar

License

SparseConvNet is BSD licensed, as found in the LICENSE file. Terms of use. Privacy

Links

  1. ICDAR 2013 Chinese Handwriting Recognition Competition 2013 First place in task 3, with test error of 2.61%. Human performance on the test set was 4.81%. Report
  2. Spatially-sparse convolutional neural networks, 2014 SparseConvNets for Chinese handwriting recognition
  3. Fractional max-pooling, 2014 A SparseConvNet with fractional max-pooling achieves an error rate of 3.47% for CIFAR-10.
  4. Sparse 3D convolutional neural networks, BMVC 2015 SparseConvNets for 3D object recognition and (2+1)D video action recognition.
  5. Kaggle plankton recognition competition, 2015 Third place. The competition solution is being adapted for research purposes in EcoTaxa.
  6. Kaggle Diabetic Retinopathy Detection, 2015 First place in the Kaggle Diabetic Retinopathy Detection competition.
  7. Submanifold Sparse Convolutional Networks, 2017 Introduces deep 'submanifold' SparseConvNets.
  8. Workshop on Learning to See from 3D Data, 2017 First place in the semantic segmentation competition. Report
  9. 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks, 2017 Semantic segmentation for the ShapeNet Core55 and NYU-DepthV2 datasets, CVPR 2018
  10. Unsupervised learning with sparse space-and-time autoencoders (3+1)D space-time autoencoders
  11. ScanNet 3D semantic label benchmark 2018 0.726 average IOU.
  12. MinkowskiEngine is an alternative implementation of SparseConvNet; 0.736 average IOU for ScanNet.
  13. SpConv: PyTorch Spatially Sparse Convolution Library is an alternative implementation of SparseConvNet.
  14. Live Semantic 3D Perception for Immersive Augmented Reality describes a way to optimize memory access for SparseConvNet.
  15. OccuSeg real-time object detection using SparseConvNets.
  16. TorchSparse implements 3D submanifold convolutions.
  17. TensorFlow 3D implements submanifold convolutions.

Citations

If you find this code useful in your research then please cite:

3D Semantic Segmentation with Submanifold Sparse Convolutional Networks, CVPR 2018
Benjamin Graham,
Martin Engelcke,
Laurens van der Maaten,

@article{3DSemanticSegmentationWithSubmanifoldSparseConvNet,
  title={3D Semantic Segmentation with Submanifold Sparse Convolutional Networks},
  author={Graham, Benjamin and Engelcke, Martin and van der Maaten, Laurens},
  journal={CVPR},
  year={2018}
}

and/or

Submanifold Sparse Convolutional Networks, https://arxiv.org/abs/1706.01307
Benjamin Graham,
Laurens van der Maaten,

@article{SubmanifoldSparseConvNet,
  title={Submanifold Sparse Convolutional Networks},
  author={Graham, Benjamin and van der Maaten, Laurens},
  journal={arXiv preprint arXiv:1706.01307},
  year={2017}
}
This library provides an abstraction to perform Model Versioning using Weight & Biases.

Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod

Hector Lopez Almazan 2 Jan 28, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
AAAI 2022: Stationary diffusion state neural estimation

Stationary Diffusion State Neural Estimation Although many graph-based clustering methods attempt to model the stationary diffusion state in their obj

绽琨 33 Nov 24, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022