An end-to-end machine learning library to directly optimize AUC loss

Overview

LibAUC

An end-to-end machine learning library for AUC optimization.

Why LibAUC?

Deep AUC Maximization (DAM) is a paradigm for learning a deep neural network by maximizing the AUC score of the model on a dataset. There are several benefits of maximizing AUC score over minimizing the standard losses, e.g., cross-entropy.

  • In many domains, AUC score is the default metric for evaluating and comparing different methods. Directly maximizing AUC score can potentially lead to the largest improvement in the model’s performance.
  • Many real-world datasets are usually imbalanced . AUC is more suitable for handling imbalanced data distribution since maximizing AUC aims to rank the predication score of any positive data higher than any negative data

Links

Installation

$ pip install libauc

Usage

Official Tutorials:

  • 01.Creating Imbalanced Benchmark Datasets [Notebook][Script]
  • 02.Training ResNet20 with Imbalanced CIFAR10 [Notebook][Script]
  • 03.Training with Pytorch Learning Rate Scheduling [Notebook][Script]
  • 04.Training with Imbalanced Datasets on Distributed Setting [Coming soon]

Quickstart for beginner:

>>> #import library
>>> from libauc.losses import AUCMLoss
>>> from libauc.optimizers import PESG
...
>>> #define loss
>>> Loss = AUCMLoss(imratio=0.1)
>>> optimizer = PESG(imratio=0.1)
...
>>> #training
>>> model.train()    
>>> for data, targets in trainloader:
>>>	data, targets  = data.cuda(), targets.cuda()
        preds = model(data)
        loss = Loss(preds, targets) 
        optimizer.zero_grad()
        loss.backward(retain_graph=True)
        optimizer.step()
...	
>>> #restart stage
>>> optimizer.update_regularizer()		
...   
>>> #evaluation
>>> model.eval()    
>>> for data, targets in testloader:
	data, targets  = data.cuda(), targets.cuda()
        preds = model(data)

Please visit our website or github for more examples.

Citation

If you find LibAUC useful in your work, please cite the following paper:

@article{yuan2020robust,
title={Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification},
author={Yuan, Zhuoning and Yan, Yan and Sonka, Milan and Yang, Tianbao},
journal={arXiv preprint arXiv:2012.03173},
year={2020}
}

Contact

If you have any questions, please contact us @ Zhuoning Yuan [[email protected]] and Tianbao Yang [[email protected]] or please open a new issue in the Github.

Comments
  • Only compatible with Nvidia GPU

    Only compatible with Nvidia GPU

    I tried running the example tutorial but I got the following error. ''' AssertionError: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx '''

    opened by Beckham45 2
  • Extend to Multi-class Classification Task and Be compatible with PyTorch scheduler

    Extend to Multi-class Classification Task and Be compatible with PyTorch scheduler

    Hi Zhuoning,

    This is an interesting work! I am wondering if the DAM method can be extended to a multi-class classification task with long-tailed imbalanced data. Intuitively, this should be possible as the famous sklearn tool provides auc score for multi-class setting by using one-versus-rest or one-versus-one technique.

    Besides, it seems that optimizer.update_regularizer() is called only when the learning rate is reduced, thus it would be more elegant to incorporate this functional call into a pytorch lr scheduler. E.g.,

    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
    scheduler.step()    # override the step to fulfill: optimizer.update_regularizer()
    
    

    For current libauc version, the PESG optimizer is not compatible with schedulers in torch.optim.lr_scheduler . It would be great if this feature can be supported in the future.

    Thanks for your work!

    opened by Cogito2012 2
  • When to use retain_graph=True?

    When to use retain_graph=True?

    Hi,

    When to use retain_graph=True in the loss backward function?

    In 2 examples (2 and 4), it is True. But not in the other examples.

    I appreciate your time.

    opened by dfrahman 1
  • Using AUCMLoss with imratio>1

    Using AUCMLoss with imratio>1

    I'm not very familiar with the maths in the paper so please forgive me if i'm asking something obvious.

    The AUCMLoss uses the "imbalance ratio" between positive and negative samples. The ratio is defined as

    the ratio of # of positive examples to the # of negative examples

    Or imratio=#pos/#neg

    When #pos<#neg, imratio is some value between 0 and 1. But when #pos>#neg, imratio>1

    Will this break the loss calculations? I have a feeling it would invalidate the many 1-self.p calculations in the LibAUC implementation, but as i'm not familiar with the maths I can't say for sure.

    Also, is there a problem (mathematically speaking) with calculating imratio=#pos/#total_samples, to avoid the problem above? When #pos<<#neg, #neg approximates #total_samples.

    opened by ayhyap 1
  • AUCMLoss does not use margin argument

    AUCMLoss does not use margin argument

    I noticed in the AUCMLoss class that the margin argument is not used. Following the formulation in the paper, the forward function should be changed in line 20 from 2*self.alpha*(self.p*(1-self.p) + \ to 2*self.alpha*(self.p*(1-self.p)*self.margin + \

    opened by ayhyap 1
  • How to train multi-label classification tasks? (like chexpert)

    How to train multi-label classification tasks? (like chexpert)

    I have started using this library and I've read your paper Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification, and I'm still not sure how to train a multi-label classification (MLC) model.

    Specifically, how did you fine-tune for the Chexpert multi-label classification task? (i.e. classify 5 diseases, where each image may have presence of 0, 1 or more diseases)

    • The first step pre-training with Cross-entropy loss seems clear to me
    • You mention: "In the second step of AUC maximization, we replace the last classifier layer trained in the first step by random weights and use our DAM method to optimize the last classifier layer and all previous layers.". The new classifier layer is a single or multi-label classifier?
    • In the Appendix I, figure 7 shows only one score as output for Deep AUC maximization (i.e. only one disease)
    • In the code, both AUCMLoss() and APLoss_SH() receive single-label outputs, not multi-label outputs, apparently

    How do you train for the 5 diseases? Train sequentially Cardiomegaly, then Edema, and so on? or with 5 losses added up? or something else?

    opened by pdpino 4
  • Example for tensorflow

    Example for tensorflow

    Thank you for the great library. Does it currently support tensorflow? If so, could you provide an example of how it can be used with tensorflow? Thank you very much

    opened by Kokkini 1
Releases(1.1.4)
  • 1.1.4(Jul 26, 2021)

    What's New

    • Added PyTorch dataloader for CheXpert dataset. Tutorial for training CheXpert is available here.
    • Added support for training AUC loss on CPU machines. Note that please remove lines with .cuda() from the code.
    • Fixed some bugs and improved the training stability
    Source code(tar.gz)
    Source code(zip)
  • 1.1.3(Jun 16, 2021)

  • 1.1.2(Jun 14, 2021)

    What's New

    1. Add SOAP optimizer contributed by @qiqi-helloworld @yzhuoning for optimizing AUPRC. Please check the tutorial here.
    2. Update ResNet18, ResNet34 with pretrained models on ImageNet1K
    3. Add new strategy for AUCM Loss: imratio is calculated over a mini-batch if initial value is not given
    4. Fixed some bugs and improved the training stability
    Source code(tar.gz)
    Source code(zip)
  • V1.1.0(May 10, 2021)

    What's New:

    • Fixed some bugs and improved the training stability
    • Changed default settings in loss function for binary labels to be 0 and 1
    • Added Pytorch dataloaders for CIFAR10, CIFAR100, CAT_vs_Dog, STL10
    • Enabled training DAM with Pytorch leanring scheduler, e.g., ReduceLROnPlateau, CosineAnnealingLR
    Source code(tar.gz)
    Source code(zip)
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022