An end-to-end machine learning library to directly optimize AUC loss

Overview

LibAUC

An end-to-end machine learning library for AUC optimization.

Why LibAUC?

Deep AUC Maximization (DAM) is a paradigm for learning a deep neural network by maximizing the AUC score of the model on a dataset. There are several benefits of maximizing AUC score over minimizing the standard losses, e.g., cross-entropy.

  • In many domains, AUC score is the default metric for evaluating and comparing different methods. Directly maximizing AUC score can potentially lead to the largest improvement in the model’s performance.
  • Many real-world datasets are usually imbalanced . AUC is more suitable for handling imbalanced data distribution since maximizing AUC aims to rank the predication score of any positive data higher than any negative data

Links

Installation

$ pip install libauc

Usage

Official Tutorials:

  • 01.Creating Imbalanced Benchmark Datasets [Notebook][Script]
  • 02.Training ResNet20 with Imbalanced CIFAR10 [Notebook][Script]
  • 03.Training with Pytorch Learning Rate Scheduling [Notebook][Script]
  • 04.Training with Imbalanced Datasets on Distributed Setting [Coming soon]

Quickstart for beginner:

>>> #import library
>>> from libauc.losses import AUCMLoss
>>> from libauc.optimizers import PESG
...
>>> #define loss
>>> Loss = AUCMLoss(imratio=0.1)
>>> optimizer = PESG(imratio=0.1)
...
>>> #training
>>> model.train()    
>>> for data, targets in trainloader:
>>>	data, targets  = data.cuda(), targets.cuda()
        preds = model(data)
        loss = Loss(preds, targets) 
        optimizer.zero_grad()
        loss.backward(retain_graph=True)
        optimizer.step()
...	
>>> #restart stage
>>> optimizer.update_regularizer()		
...   
>>> #evaluation
>>> model.eval()    
>>> for data, targets in testloader:
	data, targets  = data.cuda(), targets.cuda()
        preds = model(data)

Please visit our website or github for more examples.

Citation

If you find LibAUC useful in your work, please cite the following paper:

@article{yuan2020robust,
title={Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification},
author={Yuan, Zhuoning and Yan, Yan and Sonka, Milan and Yang, Tianbao},
journal={arXiv preprint arXiv:2012.03173},
year={2020}
}

Contact

If you have any questions, please contact us @ Zhuoning Yuan [[email protected]] and Tianbao Yang [[email protected]] or please open a new issue in the Github.

Comments
  • Only compatible with Nvidia GPU

    Only compatible with Nvidia GPU

    I tried running the example tutorial but I got the following error. ''' AssertionError: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx '''

    opened by Beckham45 2
  • Extend to Multi-class Classification Task and Be compatible with PyTorch scheduler

    Extend to Multi-class Classification Task and Be compatible with PyTorch scheduler

    Hi Zhuoning,

    This is an interesting work! I am wondering if the DAM method can be extended to a multi-class classification task with long-tailed imbalanced data. Intuitively, this should be possible as the famous sklearn tool provides auc score for multi-class setting by using one-versus-rest or one-versus-one technique.

    Besides, it seems that optimizer.update_regularizer() is called only when the learning rate is reduced, thus it would be more elegant to incorporate this functional call into a pytorch lr scheduler. E.g.,

    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
    scheduler.step()    # override the step to fulfill: optimizer.update_regularizer()
    
    

    For current libauc version, the PESG optimizer is not compatible with schedulers in torch.optim.lr_scheduler . It would be great if this feature can be supported in the future.

    Thanks for your work!

    opened by Cogito2012 2
  • When to use retain_graph=True?

    When to use retain_graph=True?

    Hi,

    When to use retain_graph=True in the loss backward function?

    In 2 examples (2 and 4), it is True. But not in the other examples.

    I appreciate your time.

    opened by dfrahman 1
  • Using AUCMLoss with imratio>1

    Using AUCMLoss with imratio>1

    I'm not very familiar with the maths in the paper so please forgive me if i'm asking something obvious.

    The AUCMLoss uses the "imbalance ratio" between positive and negative samples. The ratio is defined as

    the ratio of # of positive examples to the # of negative examples

    Or imratio=#pos/#neg

    When #pos<#neg, imratio is some value between 0 and 1. But when #pos>#neg, imratio>1

    Will this break the loss calculations? I have a feeling it would invalidate the many 1-self.p calculations in the LibAUC implementation, but as i'm not familiar with the maths I can't say for sure.

    Also, is there a problem (mathematically speaking) with calculating imratio=#pos/#total_samples, to avoid the problem above? When #pos<<#neg, #neg approximates #total_samples.

    opened by ayhyap 1
  • AUCMLoss does not use margin argument

    AUCMLoss does not use margin argument

    I noticed in the AUCMLoss class that the margin argument is not used. Following the formulation in the paper, the forward function should be changed in line 20 from 2*self.alpha*(self.p*(1-self.p) + \ to 2*self.alpha*(self.p*(1-self.p)*self.margin + \

    opened by ayhyap 1
  • How to train multi-label classification tasks? (like chexpert)

    How to train multi-label classification tasks? (like chexpert)

    I have started using this library and I've read your paper Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification, and I'm still not sure how to train a multi-label classification (MLC) model.

    Specifically, how did you fine-tune for the Chexpert multi-label classification task? (i.e. classify 5 diseases, where each image may have presence of 0, 1 or more diseases)

    • The first step pre-training with Cross-entropy loss seems clear to me
    • You mention: "In the second step of AUC maximization, we replace the last classifier layer trained in the first step by random weights and use our DAM method to optimize the last classifier layer and all previous layers.". The new classifier layer is a single or multi-label classifier?
    • In the Appendix I, figure 7 shows only one score as output for Deep AUC maximization (i.e. only one disease)
    • In the code, both AUCMLoss() and APLoss_SH() receive single-label outputs, not multi-label outputs, apparently

    How do you train for the 5 diseases? Train sequentially Cardiomegaly, then Edema, and so on? or with 5 losses added up? or something else?

    opened by pdpino 4
  • Example for tensorflow

    Example for tensorflow

    Thank you for the great library. Does it currently support tensorflow? If so, could you provide an example of how it can be used with tensorflow? Thank you very much

    opened by Kokkini 1
Releases(1.1.4)
  • 1.1.4(Jul 26, 2021)

    What's New

    • Added PyTorch dataloader for CheXpert dataset. Tutorial for training CheXpert is available here.
    • Added support for training AUC loss on CPU machines. Note that please remove lines with .cuda() from the code.
    • Fixed some bugs and improved the training stability
    Source code(tar.gz)
    Source code(zip)
  • 1.1.3(Jun 16, 2021)

  • 1.1.2(Jun 14, 2021)

    What's New

    1. Add SOAP optimizer contributed by @qiqi-helloworld @yzhuoning for optimizing AUPRC. Please check the tutorial here.
    2. Update ResNet18, ResNet34 with pretrained models on ImageNet1K
    3. Add new strategy for AUCM Loss: imratio is calculated over a mini-batch if initial value is not given
    4. Fixed some bugs and improved the training stability
    Source code(tar.gz)
    Source code(zip)
  • V1.1.0(May 10, 2021)

    What's New:

    • Fixed some bugs and improved the training stability
    • Changed default settings in loss function for binary labels to be 0 and 1
    • Added Pytorch dataloaders for CIFAR10, CIFAR100, CAT_vs_Dog, STL10
    • Enabled training DAM with Pytorch leanring scheduler, e.g., ReduceLROnPlateau, CosineAnnealingLR
    Source code(tar.gz)
    Source code(zip)
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
Pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion"

MOSNet pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion" https://arxiv.org/abs/1904.08352 Dependency L

9 Nov 18, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022