Framework for training options with different attention mechanism and using them to solve downstream tasks.

Overview

Using Attention in HRL

Framework for training options with different attention mechanism and using them to solve downstream tasks.

Requirements

GPU required

conda env create -f conda_env.yml

After the instalation ends you can activate your environment and install remaining dependencies. (e.g. sub-module gym_minigrid which is a modified version of MiniGrid )

conda activate affenv
cd gym-minigrid
pip install -e .
cd ../
pip install -e .

Instructions

In order to train options and IC_net follow these steps:

1. Configure desired environment - number of task and objects per task in file config/op_ic_net.yaml. E.g:
  env_args:
    task_size: 3
    num_tasks: 4

2. Configure desired type of attention (between "affordance", "interest", "nan") - in file config/op_ic_net.yaml. E.g. 
main:
  attention: "affordance" 

3. Train by running command
liftoff train_main.py configs/op_ic_net.yaml

Once a pre-trained option checkpoint exists a HRL agent can be trained to solve the downstream task (for the same environment the options were trained on). Follow these steps in order to train an HRL-Agent with different types of attentions:

1. Configure checkpoint (experiment config file and options_model_id) for pre-trained Options and IC_net - in file configs/hrl-agent.yaml. E.g: 

main:
  options_model_cfg: "results/op_aff_4x3/0000_multiobj/0/cfg.yaml"
  options_model_id: -1  # Last checkpoint will be used

2. Configure type of attention for training the HRL-agent (between "affordance", "interest", "nan") - in file configs/hrl-agent.yaml. E.g:
main:
  modulate_policy: affordance

3. Train HRL-agent by running command
liftoff train_mtop_ppo.py configs/hrl-agent.yaml

Both training scrips produce results in the results folder, where all the outputs are going to be stored including train/eval logs, checkpoints. Live plotting is integrated using services from Wandb (plotting has to be enabled in the config file main:plot and user logged in Wandb or user login api key in the file .wandb_key).

The console output is also available in a form:

  • Option Pre-training e.g.:
U 11 | F 022528 | FPS 0024 | D 402 | rR:u, 0.03 | F:u, 41.77 | tL:u 0.00 | tPL:u 6.47 | tNL:u 0.00 | t 52 | aff_loss 0.0570 | aff 2.8628 | NOaff 0.0159 | ic 0.0312 | cnt_ic 1.0000 | oe 2.4464 | oic0 0.0000 | oic1 0.0000 | oic2 0.0000 | oic3 0.0000 | oPic0 0.0000 | oPic1 0.0000 | oPic2 0.0000 | oPic3 0.0000 | icB 0.0208 | PicB 0.1429 | icND 0.0192

Some of the training entries decodes as

F - number of frames (steps in the env)
tL - termination loss
aff_loss - IC_net loss
cnt_ic - Intent completion per training batch 
oicN - Intent completion fraction for each option N out of Total option N sampled
oPicN - Intent completion fraction for each option N out of affordable ones
PicB - Intent completion average over all options out of affordable ones
  • HRL-agent training
U 1 | F 4555192.0 | FPS 21767 | D 209 | rR:u, 0.00 | F:u, 8.11 | e:u, 2.48 | v:u 0.00 | pL:u 0.01 | vL:u 0.00 | g:u 0.01 | TrR:u, 0.00

Some of the training entries decodes as

F - number of frames (steps in the env offseted by the number of pre-training steps)
rR - Accumulated episode reward average
TrR - Average episode success rate

Framework structure

The code is organised as follows:

  • agents/ - implementation of agents (e.g. training options and IC_net multistep_affordance.py; hrl-agent PPO ppo_smdp.py )
  • configs/ - config files for training agents
  • gym-minigrid/ - sub-module - Minigrid envs
  • models/ - Neural network modules (e.g options with IC_net aff_multistep.py and CNN backbone extractor_cnn_v2.py)
  • utils/ - Scripts for e.g.: running envs in parallel, preprocessing observations, gym wrappers, data structures, logging modules
  • train_main.py - Train Options with IC_net
  • train_mtop_ppo.py - Train HRL-agent

Acknowledgements

We used PyTorch as a machine learning framework.

We used liftoff for experiment management.

We used wandb for plotting.

We used PPO adapted for training our agents.

We used MiniGrid to create our environment.

You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023