On Evaluation Metrics for Graph Generative Models

Overview

On Evaluation Metrics for Graph Generative Models

Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor

This is the official repository for the paper On Evaluation Metrics for Graph Generative Models (hyperlink TBD). Our evaluation metrics enable the efficient computation of the distance between two sets of graphs regardless of domain. In addition, they are more expressive than previous metrics and easily incorporate continuous node and edge features in evaluation. If you're primarily interested in using our metrics in your work, please see evaluation/ for a more lightweight setup and installation and Evaluation_examples.ipynb for examples on how to utilize our code. The remainder of this README describes how to recreate our results which introduces additional dependencies.

Table of Contents

Requirements and installation

The main requirements are:

  • Python 3.7
  • PyTorch 1.8.1
  • DGL 0.6.1
pip install -r requirements.txt

Following that, install an appropriate version of DGL 0.6.1 for your system and download the proteins and ego datasets by running ./download_datasets.sh.

Reproducing main results

The arguments of our scripts are described in config.py.

Permutation experiments

Below, examples to run the scripts to run certain experiments are shown. In general, experiments can be run as:

python main.py --permutation_type={permutation type} --dataset={dataset}\
{feature_extractor} {feature_extractor_args}

For example, to run the mixing random graphs experiment on the proteins dataset using random-GNN-based metrics for a single random seed:

python main.py --permutation_type=mixing-random --dataset=proteins\
gnn

The hyperparameters of the GNN are set to our recommendations by default, however, they are easily changed by additional flags. To run the same experiment using the degree MMD metric:

python main.py --permutation_type=mixing-random --dataset=proteins\
mmd-structure --statistic=degree

Rank correlations are automatically computed and printed at the end of each experiment, and results are stored in experiment_results/. Recreating our results requires running variations of the above commands thousands of times. To generate these commands and store them in a bash script automatically, run python create_bash_script.py.

Pretraining GNNs

To pretrain a GNN for use in our permutation experiments, run python GIN_train.py, and see GIN_train.py for tweakable hyperparameters. Alternatively, the pretrained models used in our experiments can be downloaded by running ./download_pretrained_models.sh. Once you have a pretrained model, the permutation experiments can be ran using:

python main.py --permutation_type={permutation type} --dataset={dataset}\
gnn --use_pretrained {feature_extractor_args}

Generating graphs

Some of our experiments use graphs generated by GRAN. To find instructions on training and generating graphs using GRAN, please see the official GRAN repository. Alternatively, the graphs generated by GRAN used in our experiments can be downloaded by running ./download_gran_graphs.sh.

Visualization

All code for visualizing results and creating tables is found in data_visualization.ipynb.

License

We release our code under the MIT license.

Citation

@inproceedings{thompson2022evaluation,
  title={On Evaluation Metrics for Graph Generative Models},
  author={Thompson, Rylee, and Knyazev, Boris and Ghalebi, Elahe and Kim, Jungtaek, and Taylor, Graham W},
booktitle={International Conference on Learning Representations},
  year={2022}  
}
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound"

merlot_reserve Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound" MERLOT Reserve (in submission) is a mo

Rowan Zellers 92 Dec 11, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021
Project for tracking occupancy in Tel-Aviv parking lots.

Ahuzat Dibuk - Tracking occupancy in Tel-Aviv parking lots main.py This module was set-up to be executed on Google Cloud Platform. I run it every 15 m

Geva Kipper 35 Nov 22, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022