A PyTorch version of You Only Look at One-level Feature object detector

Overview

PyTorch_YOLOF

A PyTorch version of You Only Look at One-level Feature object detector.

The input image must be resized to have their shorter side being 800 and their longer side less or equal to 1333.

During reproducing the YOLOF, I found many tricks used in YOLOF but the baseline RetinaNet dosen't use those tricks. For example, YOLOF takes advantage of RandomShift, CTR_CLAMP, large learning rate, big batchsize(like 64), negative prediction threshold. Is it really fair that YOLOF use these tricks to compare with RetinaNet?

In a other word, whether the YOLOF can still work without those tricks?

Requirements

  • We recommend you to use Anaconda to create a conda environment:
conda create -n yolof python=3.6
  • Then, activate the environment:
conda activate yolof
  • Requirements:
pip install -r requirements.txt 

PyTorch >= 1.1.0 and Torchvision >= 0.3.0

Visualize positive sample

You can run following command to visualize positiva sample:

python train.py \
        -d voc \
        --batch_size 2 \
        --root path/to/your/dataset \
        --vis_targets

My Ablation Studies

image mask

  • Backbone: ResNet-50
  • image size: shorter size = 800, longer size <= 1333
  • Batch size: 16
  • lr: 0.01
  • lr of backbone: 0.01
  • SGD with momentum 0.9 and weight decay 1e-4
  • Matcher: IoU Top4 (Different from the official matcher that uses top4 of L1 distance.)
  • epoch: 12 (1x schedule)
  • lr decay: 8, 11
  • augmentation: RandomFlip

We ignore the loss of samples who are not in image.

Method AP AP50 AP75 APs APm APl
w/o mask 28.3 46.7 28.9 13.4 33.4 39.9
w mask 28.4 46.9 29.1 13.5 33.5 39.1

L1 Top4

  • Backbone: ResNet-50
  • image size: shorter size = 800, longer size <= 1333
  • Batch size: 16
  • lr: 0.01
  • lr of backbone: 0.01
  • SGD with momentum 0.9 and weight decay 1e-4
  • epoch: 12 (1x schedule)
  • lr decay: 8, 11
  • augmentation: RandomFlip
  • with image mask

IoU topk: We choose the topK of IoU between anchor boxes and labels as the positive samples.

L1 topk: We choose the topK of L1 distance between anchor boxes and labels as the positive samples.

Method AP AP50 AP75 APs APm APl
IoU Top4 28.4 46.9 29.1 13.5 33.5 39.1
L1 Top4 28.6 46.9 29.4 13.8 34.0 39.0

RandomShift Augmentation

  • Backbone: ResNet-50
  • image size: shorter size = 800, longer size <= 1333
  • Batch size: 16
  • lr: 0.01
  • lr of backbone: 0.01
  • SGD with momentum 0.9 and weight decay 1e-4
  • Matcher: L1 Top4
  • epoch: 12 (1x schedule)
  • lr decay: 8, 11
  • augmentation: RandomFlip
  • with image mask

YOLOF takes advantage of RandomShift augmentation which is not used in RetinaNet.

Method AP AP50 AP75 APs APm APl
w/o RandomShift 28.6 46.9 29.4 13.8 34.0 39.0
w/ RandomShift 29.0 47.3 29.8 14.2 34.2 38.9

Fix a bug in dataloader

  • Backbone: ResNet-50
  • image size: shorter size = 800, longer size <= 1333
  • Batch size: 16
  • lr: 0.01
  • lr of backbone: 0.01
  • SGD with momentum 0.9 and weight decay 1e-4
  • Matcher: L1 Top4
  • epoch: 12 (1x schedule)
  • lr decay: 8, 11
  • augmentation: RandomFlip + RandomShift
  • with image mask

I fixed a bug in dataloader. Specifically, I set the shuffle in dataloader as False ...

Method AP AP50 AP75 APs APm APl
bug 29.0 47.3 29.8 14.2 34.2 38.9
no bug 30.1 49.0 31.0 15.2 36.3 39.8

Ignore samples

  • Backbone: ResNet-50
  • image size: shorter size = 800, longer size <= 1333
  • Batch size: 16
  • lr: 0.01
  • lr of backbone: 0.01
  • SGD with momentum 0.9 and weight decay 1e-4
  • Matcher: L1 Top4
  • epoch: 12 (1x schedule)
  • lr decay: 8, 11
  • augmentation: RandomFlip + RandomShift
  • with image mask

We ignore those negative samples whose IoU with labels are higher the ignore threshold (igt).

Method AP AP50 AP75 APs APm APl
no igt 30.1 49.0 31.0 15.2 36.3 39.8
igt=0.7

Decode boxes

  • Backbone: ResNet-50
  • image size: shorter size = 800, longer size <= 1333
  • Batch size: 16
  • lr: 0.01
  • lr of backbone: 0.01
  • SGD with momentum 0.9 and weight decay 1e-4
  • Matcher: L1 Top4
  • epoch: 12 (1x schedule)
  • lr decay: 8, 11
  • augmentation: RandomFlip + RandomShift
  • with image mask

Method-1: ctr_x = x_anchor + t_x, ctr_y = y_anchor + t_y

Method-2: ctr_x = x_anchor + t_x * w_anchor, ctr_y = y_anchor + t_y * h_anchor

The Method-2 is following the operation used in YOLOF.

Method AP AP50 AP75 APs APm APl
Method-1
Method-2

Train

sh train.sh

You can change the configurations of train.sh.

If you just want to check which anchor box is assigned to the positive sample, you can run:

python train.py --cuda -d voc --batch_size 8 --vis_targets

According to your own situation, you can make necessary adjustments to the above run commands

Test

python test.py -d [select a dataset: voc or coco] \
               --cuda \
               -v [select a model] \
               --weight [ Please input the path to model dir. ] \
               --img_size 800 \
               --root path/to/dataset/ \
               --show

You can run the above command to visualize the detection results on the dataset.

You might also like...
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

 You Only 👀 One Sequence
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Comments
  • fix typo

    fix typo

    When I run the eval process on VOC dataset, an error occurs:

    Traceback (most recent call last):
      File "eval.py", line 126, in <module>
        voc_test(model, data_dir, device, transform)
      File "eval.py", line 42, in voc_test
        display=True)
    TypeError: __init__() got an unexpected keyword argument 'data_root'
    

    I discovered that this was due to a typo and simply fixed it. Everything is going well now.

    opened by guohanli 1
  • 标签生成函数写得有问题

    标签生成函数写得有问题

    源码中的标签生成逻辑是: 1.利用预测框与gt的l1距离筛选出topk个锚点,再利用锚点与gt的l1距离筛选出topk个锚点,将之作为预选正例锚点。 2.将预选正例锚点依据iou与gt匹配,滤除与锚点iou小于0.15的预选正例锚点 3.将gt与预测框iou<=0.7的预测框对应锚点设置为负例锚点 (而您只用了锚点,没有预选,也没用预测框)

    opened by Mr-Z-NewStar 11
Owner
Jianhua Yang
I love anime!!I love ACG!! The universe is so big,I want to fly and wander.
Jianhua Yang
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li

Mohsin Ali, Mohammed 1 Nov 12, 2021
CMP 414/765 course repository for Spring 2022 semester

CMP414/765: Artificial Intelligence Spring2021 This is the GitHub repository for course CMP 414/765: Artificial Intelligence taught at The City Univer

ch00226855 4 May 16, 2022
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
An NLP library with Awesome pre-trained Transformer models and easy-to-use interface, supporting wide-range of NLP tasks from research to industrial applications.

简体中文 | English News [2021-10-12] PaddleNLP 2.1版本已发布!新增开箱即用的NLP任务能力、Prompt Tuning应用示例与生成任务的高性能推理! 🎉 更多详细升级信息请查看Release Note。 [2021-08-22]《千言:面向事实一致性的生

6.9k Jan 01, 2023
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022