Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Overview

Transformer in Transformer

Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch.

Install

$ pip install transformer-in-transformer

Usage

import torch
from transformer_in_transformer import TNT

tnt = TNT(
    image_size = 256,       # size of image
    patch_dim = 512,        # dimension of patch token
    pixel_dim = 24,         # dimension of pixel token
    patch_size = 16,        # patch size
    pixel_size = 4,         # pixel size
    depth = 6,              # depth
    num_classes = 1000,     # output number of classes
    attn_dropout = 0.1,     # attention dropout
    ff_dropout = 0.1        # feedforward dropout
)

img = torch.randn(2, 3, 256, 256)
logits = tnt(img) # (2, 1000)

Citations

@misc{han2021transformer,
    title   = {Transformer in Transformer}, 
    author  = {Kai Han and An Xiao and Enhua Wu and Jianyuan Guo and Chunjing Xu and Yunhe Wang},
    year    = {2021},
    eprint  = {2103.00112},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • Only works if pixel_size**2 == patch_size?

    Only works if pixel_size**2 == patch_size?

    Hi, is this only supposed to work if

    pixel_size**2 == patch_size 
    

    ?. When setting the patch_size to any number that doesn't fulfill the equation this error occurs:

    --> 146         pixels += rearrange(self.pixel_pos_emb, 'n d -> () n d')
        147 
        148         for pixel_attn, pixel_ff, pixel_to_patch_residual, patch_attn, patch_ff in self.layers:
    
    RuntimeError: The size of tensor a (4) must match the size of tensor b (64) at non-singleton dimension 1
    

    The error came when running

    tnt = TNT(
        image_size = 128,       # size of image
        patch_dim = 256,        # dimension of patch token
        pixel_dim = 24,         # dimension of pixel token
        patch_size = 16,        # patch size
        pixel_size = 2,         # pixel size
        depth = 6,              # depth
        heads = 1,
        num_classes = 2,     # output number of classes
        attn_dropout = 0.1,     # attention dropout
        ff_dropout = 0.1        # feedforward dropout,
    )
    img = torch.randn(2, 3, 128, 128)
    logits = tnt(img)
    

    Since I am completely new to einops its quite hard for me to debug :D Thanks

    opened by PhilippMarquardt 1
  • Not sure what is wrong!

    Not sure what is wrong!


    RuntimeError Traceback (most recent call last) in 14 15 img = torch.randn(1, 3, 256, 256) ---> 16 logits = tnt(img) # (2, 1000)

    ~/opt/anaconda3/envs/ml/lib/python3.8/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs) 1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks 1109 or _global_forward_hooks or _global_forward_pre_hooks): -> 1110 return forward_call(*input, **kwargs) 1111 # Do not call functions when jit is used 1112 full_backward_hooks, non_full_backward_hooks = [], []

    ~/opt/anaconda3/envs/ml/lib/python3.8/site-packages/transformer_in_transformer/tnt.py in forward(self, x) 159 patches = repeat(self.patch_tokens[:(n + 1)], 'n d -> b n d', b = b) 160 --> 161 patches += rearrange(self.patch_pos_emb[:(n + 1)], 'n d -> () n d') 162 pixels += rearrange(self.pixel_pos_emb, 'n d -> () n d') 163

    RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.

    opened by RisabBiswas 0
  • patch_tokens vs patch_pos_emb

    patch_tokens vs patch_pos_emb

    Hi!

    I'm trying to understand your TNT implementation and one thing that got me a bit confused is why there are 2 parameters patch_tokens and patch_pos_emb which seems to have the same purpose - to encode patch position. Isn't one of them redundant?

    self.patch_tokens = nn.Parameter(torch.randn(num_patch_tokens + 1, patch_dim))
    self.patch_pos_emb = nn.Parameter(torch.randn(num_patch_tokens + 1, patch_dim))
    ...
    patches = repeat(self.patch_tokens[:(n + 1)], 'n d -> b n d', b = b)
    patches += rearrange(self.patch_pos_emb[:(n + 1)], 'n d -> () n d')
    
    opened by stas-sl 0
  • Inconsistent model  params with MindSpore src code

    Inconsistent model params with MindSpore src code

    There's no function or readme description of TNT-S/TNT-B model in this codebase. Something like :

    def tnt_b(num_class):
        return TNT(img_size=384,
                   patch_size=16,
                   num_channels=3,
                   embedding_dim=640,
                   num_heads=10,
                   num_layers=12,
                   hidden_dim=640*4,
                   stride=4,
                   num_class=num_class)
    

    And heads number of inner block should be 4.... https://github.com/lucidrains/transformer-in-transformer/blob/main/transformer_in_transformer/tnt.py#L135

    Wondering if anyone reproduce the paper reported results with this codebase??

    opened by WongChen 0
  • Why the loss become NaN?

    Why the loss become NaN?

    It is a great project. I am very interested in Transformer in Transformer model. I had use your model to train on Vehicle-1M dataset. Vehicle-1M is a fine graied visual classification dataset. When I use this model the loss become NaN after some batch iteration. I had decrease the learning rate of AdamOptimizer and clipping the graident torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=2.0, norm_type=2) . But the loss still will become NaN sometimes. It seems that gradients are not big but they are in the same direction for many iterations. How to solve it?

    opened by yt7589 3
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
Crowd-sourced Annotation of Human Motion.

Motion Annotation Tool Live: https://motion-annotation.humanoids.kit.edu Paper: The KIT Motion-Language Dataset Installation Start by installing all P

Matthias Plappert 4 May 25, 2020
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

NYU-VPR This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymiza

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 22 Sep 28, 2022
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022