[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

Overview

NYU-VPR

This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences.

Here is a graphical user interface (GUI) for using VPR methods on custom datasets: https://github.com/ai4ce/VPR-GUI-Tool

Requirements

To install requirements:

pip install -r requirements.txt

Data Processing

1. Image Anonymization

To install mseg-api:

cd segmentation
cd mseg-api
pip install -e .

Make sure that you can run python -c "import mseg" in python.

To install mseg-semantic:

cd segmentation
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

cd ../mseg-semantic
pip install -e .

Make sure that you can run python -c "import mseg_semantic" in python.

Finally:

input_file=/path/to/my/directory
model_name=mseg-3m
model_path=mseg_semantic/mseg-3m.pth
config=mseg_semantic/config/test/default_config_360_ms.yaml
python -u mseg_semantic/tool/universal_demo.py --config=${config} model_name {model_name} model_path ${model_path} input_file ${input_file}

2. Image Filtration

Inside the process folder, use whiteFilter.py to filter images with white pixel percentage.

Methods

1. VLAD+SURF

Modify vlad_codebook_generation.py line 157 - 170 to fit the dataset.

cd test/vlad
python vlad_codebook_generation.py
python query_image_closest_image_generation.py

*Notice: the processing may take a few hours.

2. VLAD+SuperPoint

cd test/vlad_SP
python main.py
python find_closest.py

*Notice: the processing may take a few hours.

3. NetVLAD

4. PoseNet

Copy the train_image_paths.txt and test_image_paths.txt to test/posenet.

Obtain the latitude and longtitude of training images and convert them to normalized Universal Transverse Mercator (UTM) coordinates.

cd test/posenet
python getGPS.py
python mean.py

Start training. This may take several hours. Suggestion: use slurm to run the process.

python train.py --image_path path_to_train_images/ --metadata_path trainNorm.txt

Generate the input file for testing from test_image_paths.txt.

python gen_test_txt.py

Start testing.

python single_test.py --image_path path_to_test_images/ --metadata_path test.txt --weights_path models_trainNorm/best_net.pth

The predicted normalized UTM coordinates of test images is in the image_name.txt. Match the test images with the training images based on their location.

python match.py

The matching result is in the match.txt.

5. DBoW

Copy the train_image_paths.txt and test_image_paths.txt to test/DBow3/utils. Copy and paste the content of test_image_paths.txt at the end of train_image_paths.txt and save the text file as total_images_paths.txt.

Open test/DBow3/utils/demo_general.cpp file. Change the for loop range at line 117 and line 123. Both ranges are the range of lines in total_images_paths.txt. The first for loop range is the range of test images and the second range is the range of training images. To run with multi-thread, you may run the code multiple times with small ranges of test images where the sum of ranges equals to the number of lines in test_image_paths.txt.

Compile and run the code.

cd test/DBow3
cmake .
cd utils
make
./demo_general a b

The result of each test image and its top-5 matched training images is in the output.txt.

Owner
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".

A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon

15 Dec 16, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023