CNN Based Meta-Learning for Noisy Image Classification and Template Matching

Overview

CNN Based Meta-Learning for Noisy Image Classification and Template Matching

Introduction

This master thesis used a few-shot meta learning approach to solve the problem of open-set template matching. In this thesis, template matching is treated as a classification problem, but having availability of just template as class representative. Work is based on non-parametric approach of meta-learning Prototypical Network and FEAT.

Installation

Running this code requires:

  1. PyTorch and TorchVision. Tested on version 1.8
  2. Numpy
  3. TensorboardX for visualization of results
  4. Initial weights to get better accuracy is stored in Google-drive. These weights will allow faster convergence of training. Weights are obtained using pre-training on mini-Imagenet dataset.
  5. Dataset: Dataset is private in this thesis. But can be replaced with own custom dataset or mini-Imagenet or CUB.

Dataset structure

Dataset structure will follow the other few-shot learning(FSL) benchmark as used in Prototypical Network or FEAT. For this thesis, custom dataset is used. In this dataset, a clean template image is used as a template and using this template a single shot learning model learn the class representation. Then we have other images which belongs to same template and they are classified as same class as in FSL. In dataset which is split in train, val and test, the first row of each class in CSV file should be a clean template and rest can be noisy images. The job of model is to pick one noisy image and classify them into a specific template/class, where model learned the class representation from one clean template. In original FSL model, they don't fix templates as first row in each class in CSV, as they do classification not template matching. If you want to test this model for template matching, you can replace dataset with public dataset mini-Imagenet or CUB. But in this case first image of each class will be treated as template, but nevertheless it can give you idea how FSL model work in template matching domain.

Code Structures

This model used Prototypical Network and FEAT model as base structure. Then these modes are modified for template matching and this is documented along the code structure for changes. Additionally, novel distance function is used which differs from above two SOTA models and codes are modified to incorporate these new distance function. To reproduce the result run train_fsl.py. By default, train_fsl.py commented the training part of code, so you can uncomment it to train them on custom dataset. There are four parts in the code.

  • model: It contains the main files of the code, including the few-shot learning trainer, the dataloader, the network architectures, and baseline and comparison models.
  • data: Can be used with public dataset or custom one. Splits can be taken as per Prototypical Network or based on new use case.
  • saves: The pre-trained initialized weights of ConvNet, Res-12,18 and 50.

Model Training and Testing

Use file name train_fsl.py to start the training, make sure command "trainer.train()" is not commented. Training parameters can be either changed in model/utils.py file or these parameters can be passed as command line argument.

Use file name train_fsl.py to start the testing, but this time comment the command "trainer.train()".

Note: in file train_fsl.py three variable contains the path of dataset and CSV file-

  • image_path: This is the path of the folder where images are kept.
  • split_path: Path where training and validation CSV is stored.
  • test_path: Complete path of testing CSV file without .csv extension.

Task Related Arguments (taken and modified from FEAT model)

  • dataset: default ScanImage used in this project. Other option can be selected based on your own dataset name.

  • way: The number of templates/classes in a few-shot task during meta-training, default to 5. N Templates can be treated as N class.

  • eval_way: The number of templates/classes in a few-shot task during meta-test, default to 5. This indicates that no. of possible templates/classes in which a scanned image can be matched into.

  • shot: Number of instances in each class in a few-shot task during meta-training, default to 1. For template matching, shot will be always 1 as we will have only 1 template or one image from each class.

  • eval_shot: Number of instances in each class in a few-shot task during meta-test, default to 1. For template matching, shot will be always 1 as we will have only 1 template or one image from each class.

  • query: Number of instances of image at one go in each episode which needs to be matched with template or classified into one of the template. This is to evaluate the performance during meta-training, default to 15

  • eval_query: Number of instances of image at one go in each episode which needs to be matched with template or classified into one of the template. This is to evaluate the performance during meta-testing, default to 15

Optimization Related Arguments

  • max_epoch: The maximum number of training epochs, default to 2

  • episodes_per_epoch: The number of tasks sampled in each epoch, default to 100

  • num_eval_episodes: The number of tasks sampled from the meta-val set to evaluate the performance of the model (note that we fix sampling 10,000 tasks from the meta-test set during final evaluation), default to 200

  • lr: Learning rate for the model, default to 0.0001 with pre-trained weights

  • lr_mul: This is specially designed for set-to-set functions like FEAT. The learning rate for the top layer will be multiplied by this value (usually with faster learning rate). Default to 10

  • lr_scheduler: The scheduler to set the learning rate (step, multistep, or cosine), default to step

  • step_size: The step scheduler to decrease the learning rate. Set it to a single value if choose the step scheduler and provide multiple values when choosing the multistep scheduler. Default to 20

  • gamma: Learning rate ratio for step or multistep scheduler, default to 0.2

  • fix_BN: Set the encoder to the evaluation mode during the meta-training. This parameter is useful when meta-learning with the WRN. Default to False

  • augment: Whether to do data augmentation or not during meta-training, default to False

  • mom: The momentum value for the SGD optimizer, default to 0.9

  • weight_decay: The weight_decay value for SGD optimizer, default to 0.0005

Model Related Arguments (taken and modified from FEAT model)

  • model_class: Select if we are going to use Prototypical Network or FEAT network. Default to FEAT. Other option is ProtoNet

  • use_euclideanWithCosine: if this is set to true then distance function to compare template embedding and image is used is a weighted combination of euclidean distance + cosine similarity. Default calue is False

  • use_euclidean: Use the euclidean distance. Default to True. When set as False then cosine distance is used

  • backbone_class: Types of the encoder, i.e., the convolution network (ConvNet), ResNet-12 (Res12), or ResNet-18 (Res18) or ResNet-50(Res50), default to Res12

  • balance: This is the balance weight for the contrastive regularizer. Default to 0

  • temperature: Temperature over the logits, we #divide# logits with this value. It is useful when meta-learning with pre-trained weights. Default to 64. Lower temperature faster convergence but less accurate

  • temperature2: Temperature over the logits in the regularizer, we divide logits with this value. This is specially designed for the contrastive regularizer. Default to 64. Lower temperature faster convergence but less accurate

Other Arguments

  • orig_imsize: Whether to resize the images before loading the data into the memory. -1 means we do not resize the images and do not read all images into the memory. Default to -1

  • multi_gpu: Whether to use multiple gpus during meta-training, default to False

  • gpu: The index of GPU to use. Please provide multiple indexes if choose multi_gpu. Default to 0

  • log_interval: How often to log the meta-training information, default to every 50 tasks

  • eval_interval: How frequently to validate the model over the meta-val set, default to every 1 epoch

  • save_dir: The path to save the learned models, default to ./checkpoints

  • iterations: How many times model is evaluated in test time. Higher the better, due to less bias in results. Default to 100

Training scripts for FEAT

For example, to train the 1-shot 39-way FEAT model with ResNet-12 backbone on our custom dataset scanImage with euclidean distance as distance measure:

$ python train_fsl.py  --max_epoch 220 --model_class FEAT  --backbone_class Res12 --dataset ScanImage --way 38 --eval_way 39 --shot 1 --eval_shot 1 --query 15 --eval_query 1 --balance 1 --temperature 64 --temperature2 64 --lr 0.0002 --lr_mul 10 --lr_scheduler step --step_size 40 --gamma 0.5 --init_weights ./saves/initialization/scanimage/Res12-pre.pth --eval_interval 1 --use_euclidean --save_dir './saves' --multi_gpu --gpu 0 --iterations 3000 --num_workers 12

This command can be also be used to test the template matching model just change the eval_way as per number of target template at inference time. Then model will automaticaaly parse the final weight after training. As weight file name and folder is based on train time parameter name.

Note:

Since the dataset right now is private, in future if things changes we can release the datset as well. However, our final training weights are stored with file name ScanImage-FEAT-Res12-38w01s15q-Pre-DIS in Google drive.

Acknowledgment

Following repo codes, functions and research work were leveraged to develop this work package.

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss the changes.

License

MIT

Owner
Kumar Manas
Working for traffic rule knowledge representation and explainable knowledge for autonomous driving.
Kumar Manas
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022