CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

Overview

crfill

Usage | Web App | | Paper | Supplementary Material | More results |

code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction". This repo (including code and models) are for research purposes only.

Usage

Dependencies

  1. Download code
git clone --single-branch https://github.com/zengxianyu/crfill
git submodule init
git submodule update
  1. Download data and model
chmod +x download/*
./download/download_model.sh
./download/download_datal.sh
  1. Install dependencies:
conda env create -f environment.yml

or install these packages manually in a Python 3.6 enviroment:

pytorch=1.3.1, opencv=3.4.2, tqdm, torchvision, dill, matplotlib, opencv

Inference

./test.sh

These script will run the inpainting model on the samples I provided. Modify the options --image_dir, --mask_dir, --output_dir in test.sh to test on custom data.

Train

  1. Prepare training datasets and put them in ./datasets/ following the example ./datasets/places

  2. run the training script:

./train.sh

open the html files in ./output to visualize training

After the training is finished, the model files can be found in ./checkpoints/debugarr0

you may modify the training script to use different settings, e.g., batch size, hyperparameters

Finetune

For finetune on custom dataset based on my pretrained models, use the following command:

  1. download checkpoints
./download/download_pretrain.sh
  1. run the training script
./finetune.sh

you may change the options in finetune.sh to use different hyperparameters or your own dataset

Web APP

To use the web app, these additional packages are required:

flask, requests, pillow

./demo.sh

then open http://localhost:2334 in the browser to use the web app

Citing

@inproceedings{zeng2021generative,
  title={CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction},
  author={Zeng, Yu and Lin, Zhe and Lu, Huchuan and Patel, Vishal M.},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
}

Acknowledgement

A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
PyQt6 configuration in yaml format providing the most simple script.

PyamlQt(ぴゃむるきゅーと) PyQt6 configuration in yaml format providing the most simple script. Requirements yaml PyQt6, ( PyQt5 ) Installation pip install Pya

Ar-Ray 7 Aug 15, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022