PyTorch implementation of SwAV (Swapping Assignments between Views)

Related tags

Deep Learningswav
Overview

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments

This code provides a PyTorch implementation and pretrained models for SwAV (Swapping Assignments between Views), as described in the paper Unsupervised Learning of Visual Features by Contrasting Cluster Assignments.

SwAV Illustration

SwAV is an efficient and simple method for pre-training convnets without using annotations. Similarly to contrastive approaches, SwAV learns representations by comparing transformations of an image, but unlike contrastive methods, it does not require to compute feature pairwise comparisons. It makes our framework more efficient since it does not require a large memory bank or an auxiliary momentum network. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or “views”) of the same image, instead of comparing features directly. Simply put, we use a “swapped” prediction mechanism where we predict the cluster assignment of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data.

Model Zoo

We release several models pre-trained with SwAV with the hope that other researchers might also benefit by replacing the ImageNet supervised network with SwAV backbone. To load our best SwAV pre-trained ResNet-50 model, simply do:

import torch
model = torch.hub.load('facebookresearch/swav:main', 'resnet50')

We provide several baseline SwAV pre-trained models with ResNet-50 architecture in torchvision format. We also provide models pre-trained with DeepCluster-v2 and SeLa-v2 obtained by applying improvements from the self-supervised community to DeepCluster and SeLa (see details in the appendix of our paper).

method epochs batch-size multi-crop ImageNet top-1 acc. url args
SwAV 800 4096 2x224 + 6x96 75.3 model script
SwAV 400 4096 2x224 + 6x96 74.6 model script
SwAV 200 4096 2x224 + 6x96 73.9 model script
SwAV 100 4096 2x224 + 6x96 72.1 model script
SwAV 200 256 2x224 + 6x96 72.7 model script
SwAV 400 256 2x224 + 6x96 74.3 model script
SwAV 400 4096 2x224 70.1 model script
DeepCluster-v2 800 4096 2x224 + 6x96 75.2 model script
DeepCluster-v2 400 4096 2x160 + 4x96 74.3 model script
DeepCluster-v2 400 4096 2x224 70.2 model script
SeLa-v2 400 4096 2x160 + 4x96 71.8 model -
SeLa-v2 400 4096 2x224 67.2 model -

Larger architectures

We provide SwAV models with ResNet-50 networks where we multiply the width by a factor ×2, ×4, and ×5. To load the corresponding backbone you can use:

import torch
rn50w2 = torch.hub.load('facebookresearch/swav:main', 'resnet50w2')
rn50w4 = torch.hub.load('facebookresearch/swav:main', 'resnet50w4')
rn50w5 = torch.hub.load('facebookresearch/swav:main', 'resnet50w5')
network parameters epochs ImageNet top-1 acc. url args
RN50-w2 94M 400 77.3 model script
RN50-w4 375M 400 77.9 model script
RN50-w5 586M 400 78.5 model -

Running times

We provide the running times for some of our runs:

method batch-size multi-crop scripts time per epoch
SwAV 4096 2x224 + 6x96 * * * * 3min40s
SwAV 256 2x224 + 6x96 * * 52min10s
DeepCluster-v2 4096 2x160 + 4x96 * 3min13s

Running SwAV unsupervised training

Requirements

Singlenode training

SwAV is very simple to implement and experiment with. Our implementation consists in a main_swav.py file from which are imported the dataset definition src/multicropdataset.py, the model architecture src/resnet50.py and some miscellaneous training utilities src/utils.py.

For example, to train SwAV baseline on a single node with 8 gpus for 400 epochs, run:

python -m torch.distributed.launch --nproc_per_node=8 main_swav.py \
--data_path /path/to/imagenet/train \
--epochs 400 \
--base_lr 0.6 \
--final_lr 0.0006 \
--warmup_epochs 0 \
--batch_size 32 \
--size_crops 224 96 \
--nmb_crops 2 6 \
--min_scale_crops 0.14 0.05 \
--max_scale_crops 1. 0.14 \
--use_fp16 true \
--freeze_prototypes_niters 5005 \
--queue_length 3840 \
--epoch_queue_starts 15

Multinode training

Distributed training is available via Slurm. We provide several SBATCH scripts to reproduce our SwAV models. For example, to train SwAV on 8 nodes and 64 GPUs with a batch size of 4096 for 800 epochs run:

sbatch ./scripts/swav_800ep_pretrain.sh

Note that you might need to remove the copyright header from the sbatch file to launch it.

Set up dist_url parameter: We refer the user to pytorch distributed documentation (env or file or tcp) for setting the distributed initialization method (parameter dist_url) correctly. In the provided sbatch files, we use the tcp init method (see * for example).

Evaluating models

Evaluate models: Linear classification on ImageNet

To train a supervised linear classifier on frozen features/weights on a single node with 8 gpus, run:

python -m torch.distributed.launch --nproc_per_node=8 eval_linear.py \
--data_path /path/to/imagenet \
--pretrained /path/to/checkpoints/swav_800ep_pretrain.pth.tar

The resulting linear classifier can be downloaded here.

Evaluate models: Semi-supervised learning on ImageNet

To reproduce our results and fine-tune a network with 1% or 10% of ImageNet labels on a single node with 8 gpus, run:

  • 10% labels
python -m torch.distributed.launch --nproc_per_node=8 eval_semisup.py \
--data_path /path/to/imagenet \
--pretrained /path/to/checkpoints/swav_800ep_pretrain.pth.tar \
--labels_perc "10" \
--lr 0.01 \
--lr_last_layer 0.2
  • 1% labels
python -m torch.distributed.launch --nproc_per_node=8 eval_semisup.py \
--data_path /path/to/imagenet \
--pretrained /path/to/checkpoints/swav_800ep_pretrain.pth.tar \
--labels_perc "1" \
--lr 0.02 \
--lr_last_layer 5

Evaluate models: Transferring to Detection with DETR

DETR is a recent object detection framework that reaches competitive performance with Faster R-CNN while being conceptually simpler and trainable end-to-end. We evaluate our SwAV ResNet-50 backbone on object detection on COCO dataset using DETR framework with full fine-tuning. Here are the instructions for reproducing our experiments:

  1. Install detr and prepare COCO dataset following these instructions.

  2. Apply the changes highlighted in this gist to detr backbone file in order to load SwAV backbone instead of ImageNet supervised weights.

  3. Launch training from detr repository with run_with_submitit.py.

python run_with_submitit.py --batch_size 4 --nodes 2 --lr_backbone 5e-5

Common Issues

For help or issues using SwAV, please submit a GitHub issue.

The loss does not decrease and is stuck at ln(nmb_prototypes) (8.006 for 3000 prototypes).

It sometimes happens that the system collapses at the beginning and does not manage to converge. We have found the following empirical workarounds to improve convergence and avoid collapsing at the beginning:

  • use a lower epsilon value (--epsilon 0.03 instead of the default 0.05)
  • carefully tune the hyper-parameters
  • freeze the prototypes during first iterations (freeze_prototypes_niters argument)
  • switch to hard assignment
  • remove batch-normalization layer from the projection head
  • reduce the difficulty of the problem (less crops or softer data augmentation)

We now analyze the collapsing problem: it happens when all examples are mapped to the same unique representation. In other words, the convnet always has the same output regardless of its input, it is a constant function. All examples gets the same cluster assignment because they are identical, and the only valid assignment that satisfy the equipartition constraint in this case is the uniform assignment (1/K where K is the number of prototypes). In turn, this uniform assignment is trivial to predict since it is the same for all examples. Reducing epsilon parameter (see Eq(3) of our paper) encourages the assignments Q to be sharper (i.e. less uniform), which strongly helps avoiding collapse. However, using a too low value for epsilon may lead to numerical instability.

Training gets unstable when using the queue.

The queue is composed of feature representations from the previous batches. These lines discard the oldest feature representations from the queue and save the newest one (i.e. from the current batch) through a round-robin mechanism. This way, the assignment problem is performed on more samples: without the queue we assign B examples to num_prototypes clusters where B is the total batch size while with the queue we assign (B + queue_length) examples to num_prototypes clusters. This is especially useful when working with small batches because it improves the precision of the assignment.

If you start using the queue too early or if you use a too large queue, this can considerably disturb training: this is because the queue members are too inconsistent. After introducing the queue the loss should be lower than what it was without the queue. On the following loss curve (30 first epochs of this script) we introduced the queue at epoch 15. We observe that it made the loss go more down.

SwAV training loss batch_size=256 during the first 30 epochs

If when introducing the queue, the loss goes up and does not decrease afterwards you should stop your training and change the queue parameters. We recommend (i) using a smaller queue, (ii) starting the queue later in training.

License

See the LICENSE file for more details.

See also

PyTorch Lightning Bolts: Implementation by the Lightning team.

SwAV-TF: A TensorFlow re-implementation.

Citation

If you find this repository useful in your research, please cite:

@article{caron2020unsupervised,
  title={Unsupervised Learning of Visual Features by Contrasting Cluster Assignments},
  author={Caron, Mathilde and Misra, Ishan and Mairal, Julien and Goyal, Priya and Bojanowski, Piotr and Joulin, Armand},
  booktitle={Proceedings of Advances in Neural Information Processing Systems (NeurIPS)},
  year={2020}
}
Owner
Meta Research
Meta Research
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
Official implementation of Pixel-Level Bijective Matching for Video Object Segmentation

BMVOS This is the official implementation of Pixel-Level Bijective Matching for Video Object Segmentation, to appear in WACV 2022. @article{cho2021pix

Suhwan Cho 13 Dec 14, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
Rethinking Nearest Neighbors for Visual Classification

Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin

Menglin Jia 29 Oct 11, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022