Pneumonia Detection using machine learning - with PyTorch

Overview

Pneumonia Detection

Pneumonia Detection using machine learning.

Training was done in colab:

Training In Colab


DEMO:

gif

Result (Confusion Matrix):

confusion matrix

Data

I uploaded my dataset to kaggle I used a modified version of this dataset from kaggle. Instead of NORMAL and PNEUMONIA I split the PNEUMONIA dataset to BACTERIAL PNUEMONIA and VIRAL PNEUMONIA. This way the data is more evenly distributed and I can distinguish between viral and bacterial pneumonia. I also combined the validation dataset with the test dataset because the validation dataset only had 8 images per class.

This is the resulting distribution:

data distribution

Processing and Augmentation

I resized the images to 150x150 and because some images already were grayscale I also transformed all the images to grayscale.

Additionaly I applied the following transformations/augmentations on the training data:

transforms.Resize((150, 150)),
transforms.Grayscale(),
transforms.ToTensor(),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(45)

and those transformations on the test data:

transforms.Resize((150, 150)),
transforms.Grayscale(),
transforms.ToTensor(),

This is the resulting data:

sample images

I also used one-hot encoding for the labels!



Model

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 16, 148, 148]             160
              ReLU-2         [-1, 16, 148, 148]               0
       BatchNorm2d-3         [-1, 16, 148, 148]              32
            Conv2d-4         [-1, 16, 146, 146]           2,320
              ReLU-5         [-1, 16, 146, 146]               0
       BatchNorm2d-6         [-1, 16, 146, 146]              32
         MaxPool2d-7           [-1, 16, 73, 73]               0
            Conv2d-8           [-1, 32, 71, 71]           4,640
              ReLU-9           [-1, 32, 71, 71]               0
      BatchNorm2d-10           [-1, 32, 71, 71]              64
           Conv2d-11           [-1, 32, 69, 69]           9,248
             ReLU-12           [-1, 32, 69, 69]               0
      BatchNorm2d-13           [-1, 32, 69, 69]              64
        MaxPool2d-14           [-1, 32, 34, 34]               0
           Conv2d-15           [-1, 64, 32, 32]          18,496
             ReLU-16           [-1, 64, 32, 32]               0
      BatchNorm2d-17           [-1, 64, 32, 32]             128
           Conv2d-18           [-1, 64, 30, 30]          36,928
             ReLU-19           [-1, 64, 30, 30]               0
      BatchNorm2d-20           [-1, 64, 30, 30]             128
        MaxPool2d-21           [-1, 64, 15, 15]               0
           Conv2d-22          [-1, 128, 13, 13]          73,856
             ReLU-23          [-1, 128, 13, 13]               0
      BatchNorm2d-24          [-1, 128, 13, 13]             256
           Conv2d-25          [-1, 128, 11, 11]         147,584
             ReLU-26          [-1, 128, 11, 11]               0
      BatchNorm2d-27          [-1, 128, 11, 11]             256
        MaxPool2d-28            [-1, 128, 5, 5]               0
          Flatten-29                 [-1, 3200]               0
           Linear-30                 [-1, 4096]      13,111,296
             ReLU-31                 [-1, 4096]               0
          Dropout-32                 [-1, 4096]               0
           Linear-33                 [-1, 4096]      16,781,312
             ReLU-34                 [-1, 4096]               0
          Dropout-35                 [-1, 4096]               0
           Linear-36                    [-1, 3]          12,291
          Softmax-37                    [-1, 3]               0
================================================================
Total params: 30,199,091
Trainable params: 30,199,091
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.09
Forward/backward pass size (MB): 27.95
Params size (MB): 115.20
Estimated Total Size (MB): 143.24
----------------------------------------------------------------

Visualization using Streamlit

The webapp is not hosted because the model is too large. I'd have to host it on a server. This is just to visualize.

Owner
Wilhelm Berghammer
Artificial Intelligence Student @ JKU (1st year)
Wilhelm Berghammer
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022