Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Overview

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Paddle-PANet

目录

结果对比

CTW1500

Method Backbone Fine-tuning Config Precision (%) Recall (%) F-measure (%) Model Log
mmocr_PANet Resnet18 N ctw_config 77.6 83.8 80.6 -- --
PAN (paper) ResNet18 N config 84.6 77.7 81.0 - -
PaddlePaddle_PANet ResNet18 N panet_r18_ctw.py 84.51 78.62 81.46 Model Log

论文介绍

背景简介

这是发在2019ICCV上的一篇一阶段场景文本检测论文。主要是PSENet的升级版。PSENet虽然处理速度很快,准确度很高,但后处理过程繁琐,而且没办法和网络模型融合在一起,实现训练。PANet很好的解决了这一问题,把后处理过程也放入网络中,预测出三个loss,最后进行融合。

网络结构

上图为PAN的整个网络结构,网络主要由Backbone + Segmentation Head(FPEM + FFM) + Output(Text Region、Kernel、Similarity Vector)组成。

本文使用ResNet-18作为PAN的默认Backbone,并提出了低计算量的Segmentation Head(FPFE + FFM)以解决因为使用ResNet-18而导致的特征提取能力较弱,特征感受野较小且表征能力不足的缺点。

此外,为了精准地重建完整的文字实例(text instance),提出了一个可学习的后处理方法——像素聚合法(PA),它能够通过预测出的相似向量来引导文字像素聚合到正确的kernel上去。

下面将详细介绍一下上面的各个部分。

Backbone

Backbone选择的是resnet18, 提取stride为4,8,16,32的conv2,conv3,conv4,conv5的输出作为高低层特征。每层的特征图的通道数都使用1*1卷积降维至128得到轻量级的特征图Fr。

Segmentation Head

PAN使用resNet-18作为网络的默认backbone,虽减少了计算量,但是backbone层数的减少势必会带来模型学习能力的下降。为了提高效率,作者在 resNet-18基础上提出了一个低计算量但可高效增强特征的分割头Segmentation Head。它由两个关键模块组成:特征金字塔增强模块(Feature Pyramid Enhancement Module,FPEM)、特征融合模块(Feature Fusion Module,FFM)。

FPEM

Feature Pyramid Enhancement Module(FPEM),即特征金字塔增强模块。FPEM呈级联结构且计算量小,可以连接在backbone后面让不同尺寸的特征更深、更具表征能力,结构如下:

FPEM是一个U形模组,由两个阶段组成,up-scale增强、down-scale增强。up-scale增强作用于输入的特征金字塔,它以步长32,16,8,4像素在特征图上迭代增强。在down-scale阶段,输入的是由up-scale增强生成的特征金字塔,增强的步长从4到32,同时,down-scale增强输出的的特征金字塔就是最终FPEM的输出。 FPEM模块可以看成是一个轻量级的FPN,只不过这个FPEM计算量不大,可以不停级联以达到不停增强特征的作用。

FFM

Feature Fusion Module(FFM)模块用于融合不同尺度的特征,其结构如下:

最后通过上采样将它们Concatenate到一起。

模型最后预测三种信息: 1、文字区域 2、文字kernel 3、文字kernel的相似向量

Loss

其中文字区域和kernel预测loss为:

快速安装

Recommended environment

Python 3.6+
paddlepaddle-gpu 2.0.2
nccl 2.0+
mmcv 0.2.12
editdistance
Polygon3
pyclipper
opencv-python 3.4.2.17
Cython

Install env

Install paddle following the official tutorial.

pip install -r requirement.txt
./compile.sh

Dataset

Please refer to dataset/README.md for dataset preparation.

Pretrain Backbone

download resent18 pre-train model in pretrain/resnet18.pdparams

pretrain_resnet18 password: j5g3

Training

CUDA_VISIBLE_DEVICES=0,1,2,3 python dist_train.py ${CONFIG_FILE}

For example:

CUDA_VISIBLE_DEVICES=0,1,2,3 python dist_train.py config/pan/pan_r18_ctw.py
#checkpoint continue
python3.7 dist_train.py config/pan/pan_r18_ctw_train.py --nprocs 1 --resume checkpoints/pan_r18_ctw_train

Evaluation

The evaluation scripts of CTW 1500 dataset. CTW

Text detection

./start_test.sh

License

This project is developed and maintained by IMAGINE [email protected] Key Laboratory for Novel Software Technology, Nanjing University.

This project is released under the Apache 2.0 license.

@inproceedings{wang2019efficient,
  title={Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network},
  author={Wang, Wenhai and Xie, Enze and Song, Xiaoge and Zang, Yuhang and Wang, Wenjia and Lu, Tong and Yu, Gang and Shen, Chunhua},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={8440--8449},
  year={2019}
}
Owner
Dreams Are Messages From The Deep🪐
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

人像卡通化 (Photo to Cartoon) 中文版 | English Version 该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

Minivision_AI 3.5k Dec 30, 2022
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
An unreferenced image captioning metric (ACL-21)

UMIC This repository provides an unferenced image captioning metric from our ACL 2021 paper UMIC: An Unreferenced Metric for Image Captioning via Cont

hwanheelee 14 Nov 20, 2022
Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

IIC2115 - Programación como Herramienta para la Ingeniería Videos y tutoriales Tutorial CMD Tutorial Instalación Python y Jupyter Tutorial de git-GitH

21 Nov 09, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022