Code release of paper Improving neural implicit surfaces geometry with patch warping

Overview

NeuralWarp: Improving neural implicit surfaces geometry with patch warping

Project page | Paper

Code release of paper Improving neural implicit surfaces geometry with patch warping
François Darmon, Bénédicte Bascle, Jean-Clément Devaux, Pascal Monasse and Mathieu Aubry

Installation

See requirements.txt for the python packages.

Data

Download data with ./download_dtu.sh and ./download_epfl.sh

Extract mesh from a pretrained model

Download the pretrained models with ./download_pretrained_models.sh then run the extraction script

python extract_mesh.py --conf CONF --scene SCENE [--OPTIONS]

  • CONF is the configuration file (e.g. confs/NeuralWarp_dtu.conf)
  • SCENE is the scan id for DTU data and either fountain or herzjesu for EPFL.
  • See python extract_mesh.py --help for a detailed explanation of the options. The evaluation in the papers are with default options for DTU and with --bbox_size 4 --no_one_cc --filter_visible_triangles --min_nb_visible 1 for EPFL.

The output mesh will be in evals/CONF_SCENE/ouptut_mesh.ply

You can also run the evaluation: first download the DTU evaluation data ./download_dtu_eval, then run the evaluation script python eval.py --scene SCENE. The evaluation metrics will be written in evals/CONF_SCENE/result.txt.

Train a model from scratch

First train a baseline model (i.e. VolSDF) python train.py --conf confs/baseline_DATASET --scene SCENE.

Then finetune using our method with python train.py --conf confs/NeuralWarp_DATASET --scene SCENE.

A visualization html file is generated for each training in exps/CONF_SCENE/TIMESTAMP/visu.html.

Acknowledgments

This repository is inspired by IDR

This work was supported in part by ANR project EnHerit ANR-17-CE23-0008 and was performed using HPC resources from GENCI–IDRIS 2021-AD011011756R1. We thank Tom Monnier for valuable feedback and Jingyang Zhang for sending MVSDF results.

Copyright

NeuralWarp All rights reseved to Thales LAS and ENPC.

This code is freely available for academic use only and Provided “as is” without any warranty.

Modification are allowed for academic research provided that the following conditions are met :
  * Redistributions of source code or any format must retain the above copyright notice and this list of conditions.
  * Neither the name of Thales LAS and ENPC nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
Owner
François Darmon
PhD student in 3D computer vision at Imagine team ENPC and Thales LAS FRANCE
François Darmon
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Decoupled Low-light Image Enhancement Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2 1Key Laboratory of Knowledge Engineering with Big Data

17 Apr 25, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022