This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Overview

Mega-NeRF

This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewer.

The codebase for the Mega-NeRF-Dynamic viewer can be found here.

Note: This is a preliminary release and there may still be outstanding bugs.

Citation

@misc{turki2021meganerf,
      title={Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs}, 
      author={Haithem Turki and Deva Ramanan and Mahadev Satyanarayanan},
      year={2021},
      eprint={2112.10703},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Demo

Setup

conda env create -f environment.yml
conda activate mega-nerf

The codebase has been mainly tested against CUDA >= 11.1 and V100/2080 Ti/3090 Ti GPUs. 1080 Ti GPUs should work as well although training will be much slower.

Data

Mill 19

  • The Building scene can be downloaded here.
  • The Rubble scene can be downloaded here.

UrbanScene 3D

  1. Download the raw photo collections from the UrbanScene3D dataset
  2. Download the refined camera poses for one of the scenes below:
  1. Run python scripts/copy_images.py --image_path $RAW_PHOTO_PATH --dataset_path $CAMERA_POSE_PATH

Quad 6k Dataset

  1. Download the raw photo collections from here.
  2. Download the refined camera poses
  3. Run python scripts/copy_images.py --image_path $RAW_PHOTO_PATH --dataset_path $CAMERA_POSE_PATH

Custom Data

The expected directory structure is:

  • /coordinates.pt: Torch file that should contain the following keys:
    • 'origin_drb': Origin of scene in real-world units
    • 'pose_scale_factor': Scale factor mapping from real-world unit (ie: meters) to [-1, 1] range
  • '/{val|train}/rgbs/': JPEG or PNG images
  • '/{val|train}/metadata/': Image-specific image metadata saved as a torch file. Each image should have a corresponding metadata file with the following file format: {rgb_stem}.pt. Each metadata file should contain the following keys:
    • 'W': Image width
    • 'H': Image height
    • 'intrinsics': Image intrinsics in the following form: [fx, fy, cx, cy]
    • 'c2w': Camera pose. 3x3 camera matrix with the convention used in the original NeRF repo, ie: x: down, y: right, z: backwards, followed by the following transformation: torch.cat([camera_in_drb[:, 1:2], -camera_in_drb[:, :1], camera_in_drb[:, 2:4]], -1)

Training

  1. Generate the training partitions for each submodule: python scripts/create_cluster_masks.py --config configs/mega-nerf/${DATASET_NAME}.yml --dataset_path $DATASET_PATH --output $MASK_PATH --grid_dim $GRID_X $GRID_Y
    • Note: this can be run across multiple GPUs by instead running python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node $NUM_GPUS --max_restarts 0 scripts/create_cluster_masks.py
  2. Train each submodule: python mega_nerf/train.py --config_file configs/mega-nerf/${DATASET_NAME}.yml --exp_name $EXP_PATH --dataset_path $DATASET_PATH --chunk_paths $SCRATCH_PATH --cluster_mask_path ${MASK_PATH}/${SUBMODULE_INDEX}
    • Note: training with against full scale data will write hundreds of GBs / several TBs of shuffled data to disk. You can downsample the training data using train_scale_factor option.
    • Note: we provide a utility script based on parscript to start multiple training jobs in parallel. It can run through the following command: CONFIG_FILE=configs/mega-nerf/${DATASET_NAME}.yaml EXP_PREFIX=$EXP_PATH DATASET_PATH=$DATASET_PATH CHUNK_PREFIX=$SCRATCH_PATH MASK_PATH=$MASK_PATH python -m parscript.dispatcher parscripts/run_8.txt -g $NUM_GPUS
  3. Merge the trained submodules into a unified Mega-NeRF model: python scripts/merge_submodules.py --config_file configs/mega-nerf/${DATASET_NAME}.yaml --ckpt_prefix ${EXP_PREFIX}- --centroid_path ${MASK_PATH}/params.pt --output $MERGED_OUTPUT

Evaluation

Single-GPU evaluation: python mega_nerf/eval.py --config_file configs/nerf/${DATASET_NAME}.yaml --exp_name $EXP_NAME --dataset_path $DATASET_PATH --container_path $MERGED_OUTPUT

Multi-GPU evaluation: python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node $NUM_GPUS mega_nerf/eval.py --config_file configs/nerf/${DATASET_NAME}.yaml --exp_name $EXP_NAME --dataset_path $DATASET_PATH --container_path $MERGED_OUTPUT

Octree Extraction (for use by Mega-NeRF-Dynamic viewer)

python scripts/create_octree.py --config configs/mega-nerf/${DATASET_NAME}.yaml --dataset_path $DATASET_PATH --container_path $MERGED_OUTPUT --output $OCTREE_PATH

Acknowledgements

Large parts of this codebase are based on existing work in the nerf_pl, NeRF++, and Plenoctree repositories. We use svox to serialize our sparse voxel octrees and the generated structures should be largely compatible with that codebase.

Owner
cmusatyalab
cmusatyalab
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022