Low-code/No-code approach for deep learning inference on devices

Related tags

Deep LearningEzEdgeAI
Overview

EzEdgeAI

A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framework and a visual flow-based programming development environment.

211130

This project implemented the "Edge Impulse for Linux" Python SDK on the Raspberry Pi 4 development board and used "Tutorial: Object Detection" as a demonstration. The operation steps on the Raspberry Pi 4 development board are as follows:

  • Install the Edge Impulse for Linux CLI:
    curl -sL https://deb.nodesource.com/setup_12.x | sudo bash -
    sudo apt install -y gcc g++ make build-essential nodejs sox gstreamer1.0-tools gstreamer1.0-plugins-good gstreamer1.0-plugins-base gstreamer1.0-plugins-base-apps
    npm config set user root && sudo npm install edge-impulse-linux -g --unsafe-perm

  • Connecting to Edge Impulse:
    edge-impulse-linux --disable-camera

For unknown reasons, the edge-impulse-linux program will not detect that my USB Camera (UVC) is on the Raspberry Pi 4. So add the --disable-camera option to avoid this issue.

  • Install the SDK:
    sudo apt-get install libatlas-base-dev libportaudio0 libportaudio2 libportaudiocpp0 portaudio19-dev
    pip3 install edge_impulse_linux -i https://pypi.python.org/simple

  • Update the NumPy:
    sudo pip3 install -U numpy

  • Download the model file via:
    edge-impulse-linux-runner --download modelfile.eim
    and put the model file in the project directory.

  • Install the PyQt5:
    sudo apt-get install python3-pyqt5

  • Run the EzEdgeAI project:
    python diagram-editor.py

Owner
On-Device AI Co., Ltd.
Our Services : Deploy deep learning models on mobile and IoT devices
On-Device AI Co., Ltd.
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022