[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

Overview

MMChat

This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media.

Dataset

MMChat is a large-scale dialogue dataset that contains image-grounded dialogues in Chinese. Each dialogue in MMChat is associated with one or more images (maximum 9 images per dialogue). We design various strategies to ensure the quality of the dialogues in MMChat. Please read our paper for more details. The images in the dataset are hosted on Weibo's static image server. You can refer to the scripts provided in data_processing/weibo_image_crawler to download these images.

Two sample dialogues form MMChat are given below (translated from Chinese): A sample dialogue from MMChat

MMChat is released in different versions:

Rule Filtered Raw MMChat

This version of MMChat contains raw dialogues filtered by our rules. The following table shows some basic statistics:

Item Description Count
Sessions 4.257 M
Sessions with more than 4 utterances 2.304 M
Utterances 18.590 M
Images 4.874 M
Avg. utterance per session 4.367
Avg. image per session 1.670
Avg. character per utterance 14.104

We devide above dialogues into 9 splits to facilitate the download:

  1. Split0 Google Drive, Baidu Netdisk
  2. Split1 Google Drive, Baidu Netdisk
  3. Split2 Google Drive, Baidu Netdisk
  4. Split3 Google Drive, Baidu Netdisk
  5. Split4 Google Drive, Baidu Netdisk
  6. Split5 Google Drive, Baidu Netdisk
  7. Split6 Google Drive, Baidu Netdisk
  8. Split7 Google Drive, Baidu Netdisk
  9. Split8 Google Drive, Baidu Netdisk

LCCC Filtered MMChat

This version of MMChat contains the dialogues that are filtered based on the LCCC (Large-scale Cleaned Chinese Conversation) dataset. Specifically, some dialogues in MMChat are also contained in LCCC. We regard these dialogues as cleaner dialogues since sophisticated schemes are designed in LCCC to filter out noises. This version of MMChat is obtained using the script data_processing/LCCC_filter.py The following table shows some basic statistics:

Item Description Count
Sessions 492.6 K
Sessions with more than 4 utterances 208.8 K
Utterances 1.986 M
Images 1.066 M
Avg. utterance per session 4.031
Avg. image per session 2.514
Avg. character per utterance 11.336

We devide above dialogues into 9 splits to facilitate the download:

  1. Split0 Google Drive, Baidu Netdisk
  2. Split1 Google Drive, Baidu Netdisk
  3. Split2 Google Drive, Baidu Netdisk
  4. Split3 Google Drive, Baidu Netdisk
  5. Split4 Google Drive, Baidu Netdisk
  6. Split5 Google Drive, Baidu Netdisk
  7. Split6 Google Drive, Baidu Netdisk
  8. Split7 Google Drive, Baidu Netdisk
  9. Split8 Google Drive, Baidu Netdisk

MMChat

The MMChat dataset reported in our paper are given here. The Weibo content corresponding to these dialogues are all "分享图片", (i.e., "Share Images" in English). The following table shows some basic statistics:

Item Description Count
Sessions 120.84 K
Sessions with more than 4 utterances 17.32 K
Utterances 314.13 K
Images 198.82 K
Avg. utterance per session 2.599
Avg. image per session 2.791
Avg. character per utterance 8.521

The above dialogues can be downloaded from either Google Drive or Baidu Netdisk.

MMChat-hf

We perform human annotation on the sampled dialogues to determine whether the given images are related to the corresponding dialogues. The following table only shows the statistics for dialogues that are annotated as image-related.

Item Description Count
Sessions 19.90 K
Sessions with more than 4 utterances 8.91 K
Utterances 81.06 K
Images 52.66K
Avg. utterance per session 4.07
Avg. image per session 2.70
Avg. character per utterance 11.93

We annotated about 100K dialogues. All the annotated dialogues can be downloaded from either Google Drive or Baidu Netdisk.

Code

We are also releasing all the codes used for our experiments. You can use the script run_training.sh in each folder to launch the distributed training.

For models that require image features, you can extract the image features using the scripts in data_processing/extract_image_features

The model shown in our paper can be found in dialog_image: Model

Reference

Please cite our paper if you find our work useful ;)

@inproceedings{zheng2022MMChat,
  author    = {Zheng, Yinhe and Chen, Guanyi and Liu, Xin and Sun, Jian},
  title     = {MMChat: Multi-Modal Chat Dataset on Social Media},
  booktitle = {Proceedings of The 13th Language Resources and Evaluation Conference},
  year      = {2022},
  publisher = {European Language Resources Association},
}
@inproceedings{wang2020chinese,
  title     = {A Large-Scale Chinese Short-Text Conversation Dataset},
  author    = {Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie},
  booktitle = {NLPCC},
  year      = {2020},
  url       = {https://arxiv.org/abs/2008.03946}
}
Owner
Silver
Dialogue System, Natural Language Processing
Silver
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022