Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Overview

Real-Time Seizure Detection using Electroencephalogram (EEG)

This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting".

  • If you have used our code or referred to our result in your research, please cite:
@article{leerealtime2022,
  author = {Lee, Kwanhyung and Jeong, Hyewon and Kim, Seyun and Yang, Donghwa and Kang, Hoon-Chul and Choi, Edward},
  title = {Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting},
  booktitle = {Preprint},
  year = {2022}
}

Concept Figure

We downsample the EEG signal and extract features. The models detect whether ictal / non-ictal signal appears within the 4-second sliding window input. We present an example case with Raw EEG signal but other signal feature extractors can also be applied in the pipeline. concpet

Requirements

To install all the requirements of this repository in your environment, run:

pip install -r requirements.txt

Preprocessing

To construct dataset with TUH EEG dataset, you can download __ and run:

python preproces.py --data_type train --cpu_num *available cpu numbers* --label_type  *tse or tse_bi* --save_directory *path to save preprocessed files* --samplerate *sample rate that you want to re-sample all files*

Model Training

Check our builder/models/detection_models or builder/models/multiclassification repository to see available models for each task. To train the model in default setting, run a command in a format as shown below :

CUDA_VISIBLE_DEVICES=*device number* python ./2_train.py --project-name *folder name to store trained model* --model *name of model to run* --task-type *task*

For sincnet settin, add --sincnet-bandnum 7

Example run for binary seizure detection:

CUDA_VISIBLE_DEVICES=7 python3 ./2_train.py --project-name alexnet_v4_raw --model alexnet_v4 --task-type binary --optim adam --window-size 4 --window-shift 1 --eeg-type bipolar --enc-model raw --binary-sampler-type 6types --binary-target-groups 2 --epoch 8 --batch-size 32 --seizure-wise-eval-for-binary True
CUDA_VISIBLE_DEVICES=7 python3 ./2_train.py --project-name cnn2d_lstm_raw --model cnn2d_lstm_v8 --task-type binary --optim adam --window-size 4 --window-shift 1 --eeg-type bipolar --enc-model raw --binary-sampler-type 6types --binary-target-groups 2 --epoch 8 --batch-size 32 --seizure-wise-eval-for-binary True

Example run for SincNet signal feature extraction :

CUDA_VISIBLE_DEVICES=7 python3 ./2_train.py --project-name alexnet_v4_raw_sincnet --model alexnet_v4 --task-type binary --optim adam --window-size 4 --window-shift 1 --eeg-type bipolar --enc-model sincnet --sincnet-bandnum 7 --binary-sampler-type 6types --binary-target-groups 2 --epoch 8 --batch-size 32 --seizure-wise-eval-for-binary True

Other arguments you can add :

  1. enc-model : preprocessing method to extract features from raw EEG data (options: raw, sincnet, LFCC, stft2, psd2, downsampled) psd2 is for Frequency bands described in our paper stft2 is for short-time fourier transform
  2. seizure-wise-eval-for-binary : perform seizure-wise evaluation for binary task at the end of training if True
  3. ignore-model-summary : does not print model summary and size information if True model summary is measured with torchinfo Please refer to /control/config.py for other arguments and brief explanations.

Model Evaluation

We provide multiple evaluation methods to measure model performance in different perspectives. This command will measure the model's inference time in seconds for one window.

python ./3_test.py --project-name *folder where model is stored* --model *name of model to test* --task-type *task*
python ./4_seiz_test.py --project-name *folder where model is stored* --model *name of model to test* --task-type *task*

Test and measure model speed

To evaluate the model and measure model speed per window using cpu, run the following command :

CUDA_VISIBLE_DEVICES="" python ./3_test.py --project-name *folder where model is stored* --model *name of model to test* --cpu 1 --batch-size 1

For sincnet setting, add --sincnet-bandnum 7 4_seiz_test.py is for evaluation metrics of OVLP, TAES, average latency, and MARGIN

Other arguments you can add :

  1. ignore-model-speed : does not calculate model's inference time per sliding window if True
Owner
AITRICS
AITRICS
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi

HYOJINPARK 22 Jan 01, 2023
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022