Pretty Tensor - Fluent Neural Networks in TensorFlow

Overview

Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Pretty Tensor provides a set of objects that behave likes Tensors, but also support a chainable object syntax to quickly define neural networks and other layered architectures in TensorFlow.

result = (pretty_tensor.wrap(input_data, m)
          .flatten()
          .fully_connected(200, activation_fn=tf.nn.relu)
          .fully_connected(10, activation_fn=None)
          .softmax(labels, name=softmax_name))

Please look here for full documentation of the PrettyTensor object for all available operations: Available Operations or you can check out the complete documentation

See the tutorial directory for samples: tutorial/

Installation

The easiest installation is just to use pip:

  1. Follow the instructions at tensorflow.org
  2. pip install prettytensor

Note: Head is tested against the TensorFlow nightly builds and pip is tested against TensorFlow release.

Quick start

Imports

import prettytensor as pt
import tensorflow as tf

Setup your input

my_inputs = # numpy array of shape (BATCHES, BATCH_SIZE, DATA_SIZE)
my_labels = # numpy array of shape (BATCHES, BATCH_SIZE, CLASSES)
input_tensor = tf.placeholder(np.float32, shape=(BATCH_SIZE, DATA_SIZE))
label_tensor = tf.placeholder(np.float32, shape=(BATCH_SIZE, CLASSES))
pretty_input = pt.wrap(input_tensor)

Define your model

softmax, loss = (pretty_input.
                 fully_connected(100).
                 softmax_classifier(CLASSES, labels=label_tensor))

Train and evaluate

accuracy = softmax.evaluate_classifier(label_tensor)

optimizer = tf.train.GradientDescentOptimizer(0.1)  # learning rate
train_op = pt.apply_optimizer(optimizer, losses=[loss])

init_op = tf.initialize_all_variables()

with tf.Session() as sess:
    sess.run(init_op)
    for inp, label in zip(my_inputs, my_labels):
        unused_loss_value, accuracy_value = sess.run([loss, accuracy],
                                 {input_tensor: inp, label_tensor: label})
        print 'Accuracy: %g' % accuracy_value

Features

Thin

Full power of TensorFlow is easy to use

Pretty Tensors can be used (almost) everywhere that a tensor can. Just call pt.wrap to make a tensor pretty.

You can also add any existing TensorFlow function to the chain using apply. apply applies the current Tensor as the first argument and takes all the other arguments as normal.

Note: because apply is so generic, Pretty Tensor doesn't try to wrap the world.

Plays well with other libraries

It also uses standard TensorFlow idioms so that it plays well with other libraries, this means that you can use it a little bit in a model or throughout. Just make sure to run the update_ops on each training set (see with_update_ops).

Terse

You've already seen how a Pretty Tensor is chainable and you may have noticed that it takes care of handling the input shape. One other feature worth noting are defaults. Using defaults you can specify reused values in a single place without having to repeat yourself.

with pt.defaults_scope(activation_fn=tf.nn.relu):
  hidden_output2 = (pretty_images.flatten()
                   .fully_connected(100)
                   .fully_connected(100))

Check out the documentation to see all supported defaults.

Code matches model

Sequential mode lets you break model construction across lines and provides the subdivide syntactic sugar that makes it easy to define and understand complex structures like an inception module:

with pretty_tensor.defaults_scope(activation_fn=tf.nn.relu):
  seq = pretty_input.sequential()
  with seq.subdivide(4) as towers:
    towers[0].conv2d(1, 64)
    towers[1].conv2d(1, 112).conv2d(3, 224)
    towers[2].conv2d(1, 32).conv2d(5, 64)
    towers[3].max_pool(2, 3).conv2d(1, 32)

Inception module showing branch and rejoin

Templates provide guaranteed parameter reuse and make unrolling recurrent networks easy:

output = [], s = tf.zeros([BATCH, 256 * 2])

A = (pretty_tensor.template('x')
     .lstm_cell(num_units=256, state=UnboundVariable('state'))

for x in pretty_input_array:
  h, s = A.construct(x=x, state=s)
  output.append(h)

There are also some convenient shorthands for LSTMs and GRUs:

pretty_input_array.sequence_lstm(num_units=256)

Unrolled RNN

Extensible

You can call any existing operation by using apply and it will simply subsitute the current tensor for the first argument.

pretty_input.apply(tf.mul, 5)

You can also create a new operation There are two supported registration mechanisms to add your own functions. @Register() allows you to create a method on PrettyTensor that operates on the Tensors and returns either a loss or a new value. Name scoping and variable scoping are handled by the framework.

The following method adds the leaky_relu method to every Pretty Tensor:

@pt.Register
def leaky_relu(input_pt):
  return tf.select(tf.greater(input_pt, 0.0), input_pt, 0.01 * input_pt)

@RegisterCompoundOp() is like adding a macro, it is designed to group together common sets of operations.

Safe variable reuse

Within a graph, you can reuse variables by using templates. A template is just like a regular graph except that some variables are left unbound.

See more details in PrettyTensor class.

Accessing Variables

Pretty Tensor uses the standard graph collections from TensorFlow to store variables. These can be accessed using tf.get_collection(key) with the following keys:

  • tf.GraphKeys.VARIABLES: all variables that should be saved (including some statistics).
  • tf.GraphKeys.TRAINABLE_VARIABLES: all variables that can be trained (including those before a stop_gradients` call). These are what would typically be called parameters of the model in ML parlance.
  • pt.GraphKeys.TEST_VARIABLES: variables used to evaluate a model. These are typically not saved and are reset by the LocalRunner.evaluate method to get a fresh evaluation.

Authors

Eider Moore (eiderman)

with key contributions from:

  • Hubert Eichner
  • Oliver Lange
  • Sagar Jain (sagarjn)
Owner
Google
Google ❤️ Open Source
Google
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
A proof of concept ai-powered Recaptcha v2 solver

Recaptcha Fullauto I've decided to open source my old Recaptcha v2 solver. My latest version will be opened sourced this summer. I am hoping this proj

Nate 60 Dec 20, 2022
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
Scalable, event-driven, deep-learning-friendly backtesting library

...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on

Andrew 922 Dec 27, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalação: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021
This repository attempts to replicate the SqueezeNet architecture and implement the same on an image classification task.

SqueezeNet-Implementation This repository attempts to replicate the SqueezeNet architecture using TensorFlow discussed in the research paper: "Squeeze

Rohan Mathur 3 Dec 13, 2022