Exploit ILP to learn symmetry breaking constraints of ASP programs.

Overview

ILP Symmetry Breaking

Overview

This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs.

Given an ASP file, we use the system SBASS (symmetry-breaking answer set solving) to infer its graph representation and then detect the symmetries as a graph automorphism problem (performed by the system SAUCY). SBASS returns a set of (irredundant) graph symmetry generators, which are used in our framework to compute the positive and negative examples for the ILP system ILASP.

Note: the files of Active Background Knowledge (active_BK/active_BK_sat) contain the constraints learned for the experiments. To test the framework, remove the constraints and follow the files' instructions to obtain the same result.

Project Structure

.
├── \Experiments              # Directory with experiments results 
│   ├── experiments.csv         # CSV file with results
│   └── experiments             # Script to compare the running-time performance     
│
├── \Instances              # Directory with problem instances
│   ├── \House_Configuration     # House-Configuration Problem     
│   ├── \Pigeon_Owner            # Pigeon-Hole Problem with colors and owners extension   
│   ├── \Pigeon_Color            # Pigeon-Hole Problem with colors extension
│   └── \Pigeon_Hole             # Pigeon-Hole Problem  
│
├── \src                    # Sources  
│   ├── \ILASP4                  # ILASP4 
│   ├── \SBASS                   # SBASS 
│   ├── file_names.py            # Python module with file names
│   ├── parser.py                # Main python file: create the positive and negative examples from SBASS output
│   ├── remove.py                # Auxiliary python file to remove duplicate in smodels file
│   └── permutations.lp          # ASP file which computes the (partial) non symmetric 
│                                  permutations of atoms
│
├── .gitignore 
├── .gitattributes
├── ILP_SBC                 # Script that runs SBASS and lift the SBC found using ILASP
└── README.md

Prerequisites

Usage

1) Create default positive examples

Create the default positive examples for Pigeon_Hole problem: each instance in the directory Gen generate a positive example.

$ .\ILP_SBC -g .\Instances\Pigeon_Hole

2) Create positive and negative examples

Default mode: each non-symmetric answer set defines a positive example

 $ .\ILP_SBC -d .\Instances\Pigeon_Hole

Satisfiable mode: define a single positive example with empty inclusions and exclusions

 $ .\ILP_SBC -s .\Instances\Pigeon_Hole

3) Run ILASP to extend the active background knowledge

 $ .\ILP_SBC -i .\Instances\Pigeon_Hole

Citations

C. Drescher, O. Tifrea, and T. Walsh, “Symmetry-breaking answer set solving” (SBASS)

@article{drescherSymmetrybreakingAnswerSet2011,
	title = {Symmetry-breaking answer set solving},
	volume = {24},
	doi = {10.3233/AIC-2011-0495},
	number = {2},
	journal = {AI Commun.},
	author = {Drescher, Christian and Tifrea, Oana and Walsh, Toby},
	year = {2011},
	pages = {177--194}
}

M. Law, A. Russo, and K. Broda, “The {ILASP} System for Inductive Learning of Answer Set Programs” (ILASP)

@article{larubr20b,
     title = {The {ILASP} System for Inductive Learning of Answer Set Programs},
     author = {M. Law and A. Russo  and K. Broda},
     journal = {The Association for Logic Programming Newsletter},
     year = {2020}
}
@misc{ilasp,
     author = {M. Law and A. Russo  and K. Broda},
     title = {Ilasp Releases},
     howpublished = {\url{www.ilasp.com}},
     note = {Accessed: 2020-10-01},
     year={2020}
}
Owner
Research Group Production Systems
Research Group Production Systems
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022