In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Overview

Kaggle Competition: Forest Cover Type Prediction

In this project we predict the forest cover type (the predominant kind of tree cover) using the cartographic variables given in the training/test datasets. You can find more about this project at Forest Cover Type Prediction.

This project and its detailed notebooks were created and published on Kaggle.

Project Objective

  • We are given raw unscaled data with both numerical and categorical variables.
  • First, we performed Exploratory Data Analysis in order to visualize the characteristics of our given variables.
  • We constructed various models to train our data - utilizing Optuna hyperparameter tuning to get parameters that maximize the model accuracies.
  • Using feature engineering techniques, we built new variables to help improve the accuracy of our models.
  • Using the strategies above, we built our final model and generated forest cover type predictions for the test dataset.

Links to Detailed Notebooks

EDA Summary

The purpose of the EDA is to provide an overview of how python visualization tools can be used to understand the complex and large dataset. EDA is the first step in this workflow where the decision-making process is initiated for the feature selection. Some valuable insights can be obtained by looking at the distribution of the target, relationship to the target and link between the features.

Visualize Numerical Variables

  • Using histograms, we can visualize the spread and values of the 10 numeric variables.
  • The Slope, Vertical Distance to Hydrology, Horizontal Distance to Hydrology, Roadways and Firepoints are all skewed right.
  • Hillshade 9am, Noon, and 3pm are all skewed left. visualize numerical variables histograms

Visualize Categorical Variables

  • The plots below the number of observations of the different Wilderness Areas and Soil Types.
  • Wilderness Areas 3 and 4 have the most presence.
  • Wilderness Area 2 has the least amount of observations.
  • The most observations are seen having Soil Type 10 followed by Soil Type 29.
  • The Soil Types with the least amount of observations are Soil Type 7 and 15. # of observations of wilderness areas # of observations of soil types

Feature Correlation

With the heatmap excluding binary variables this helps us visualize the correlations of the features. We were also able to provide scatterplots for four pairs of features that had a positive correlation greater than 0.5. These are one of the many visualization that helped us understand the characteristics of the features for future feature engineering and model selection.

heatmap scatterplots

Summary of Challenges

EDA Challenges

  • This project consists of a lot of data and can have countless of patterns and details to look at.
  • The training data was not a simple random sample of the entire dataset, but a stratified sample of the seven forest cover type classes which may not represent the final predictions well.
  • Creating a "story" to be easily incorporated into the corresponding notebooks such as Feature Engineering, Models, etc.
  • Manipulating the Wilderness_Area and Soil_Type (one-hot encoded variables) to visualize its distribution compared to Cover_Type.

Feature Engineering Challenges

  • Adding new variables during feature engineering often produced lower accuracy.
  • Automated feature engineering using entities and transformations amongst existing columns from a single dataset created many new columns that did not positively contribute to the model's accuracy - even after feature selection.
  • Testing the new features produced was very time consuming, even with the GPU accelerator.
  • After playing around with several different sets of new features, we found that only including manually created new features yielded the highest results.

Modeling Challenges

  • Ensemble and stacking methods initially resulted in models yielding higher accuracy on the test set, but as we added features and refined the parameters for each individual model, an individual model yielded a better score on the test set.
  • Performing hyperparameter tuning and training for several of the models was computationally expensive. While we were able to enable GPU acceleration for the XGBoost model, activating the GPU accelerator seemed to increase the tuning and training for the other models in the training notebook.
  • Optuna worked to reduce the time to process hyperparameter trials, but some of the hyperparameters identified through this method yielded weaker models than the hyperparameters identified through GridSearchCV. A balance between the two was needed.

Summary of Modeling Techniques

We used several modeling techniques for this project. We began by training simple, standard models and applying the predictions to the test set. This resulted in models with only 50%-60% accuracy, necessitating more complex methods. The following process was used to develop the final model:

  • Scaling the training data to perform PCA and identify the most important features (see the Feature_Engineering Notebook for more detail).
  • Preprocessing the training data to add in new features.
  • Performing GridSearchCV and using the Optuna approach (see the ModelParams Notebook for more detail) for identifying optimal parameters for the following models with corresponding training set accuracy scores:
    • Logistic Regression (.7126)
    • Decision Tree (.9808)
    • Random Forest (1.0)
    • Extra Tree Classifier (1.0)
    • Gradient Boosting Classifier (1.0)
    • Extreme Gradient Boosting Classifier (using GPU acceleration; 1.0)
    • AdaBoost Classifier (.5123)
    • Light Gradient Boosting Classifier (.8923)
    • Ensemble/Voting Classifiers (assorted combinations of the above models; 1.0)
  • Saving and exporting the preprocessor/scaler and each each version of the model with the highest accuracy on the training set and highest cross validation score (see the Training notebook for more detail).
  • Calculating each model's predictions for the test set and submitting to determine accuracy on the test set:
    • Logistic Regression (.6020)
    • Decision Tree (.7102)
    • Random Forest (.7465)
    • Extra Tree Classifier (.7962)
    • Gradient Boosting Classifier (.7905)
    • Extreme Gradient Boosting Classifier (using GPU acceleration; .7803)
    • AdaBoost Classifier (.1583)
    • Light Gradient Boosting Classifier (.6891)
    • Ensemble/Voting Classifier (assorted combinations of the above models; .7952)

Summary of Final Results

The model with the highest accuracy on the out of sample (test set) data was selected as our final model. It should be noted that the model with the highest accuracy according to 10-fold cross validation was not the most accurate model on the out of sample data (although it was close). The best model was the Extra Tree Classifier with an accuracy of .7962 on the test set. The Extra Trees model outperformed our Ensemble model (.7952), which had been our best model for several weeks. See the Submission Notebook and FinalModelEvaluation Notebook for additional detail.

Owner
Marianne Joy Leano
A recent graduate with a Master's in Data Science. Excited to explore data and create projects!
Marianne Joy Leano
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos πŸŽ‰οΈ πŸ“œ Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Pyramid Scene Parsing Network, CVPR2017.

Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This

Hengshuang Zhao 1.5k Jan 05, 2023
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! πŸŽ„ πŸŽ… To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Γ…gren 5 Dec 29, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023