official implementation for the paper "Simplifying Graph Convolutional Networks"

Overview

Simplifying Graph Convolutional Networks

made-with-python License: MIT

Updates

  • As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After fixing this bug, SGC achieves a F1 score of 95.0 (previously, it was 94.9).
  • Practical advice: it is often very helpful to normalize the features to have zero mean with standard deviation one to accelerate the convergence of SGC (and many other linear models). For example, we apply this normalization for the reddit dataset. Please consider doing this when applying SGC to other datasets. For some relevant discussions, see Ross et al, 2013 and Li and Zhang, 1998.

Authors:

*: Equal Contribution

Overview

This repo contains an example implementation of the Simple Graph Convolution (SGC) model, described in the ICML2019 paper Simplifying Graph Convolutional Networks.

SGC removes the nonlinearities and collapes the weight matrices in Graph Convolutional Networks (GCNs) and is essentially a linear model. For an illustration,

SGC achieves competitive performance while saving much training time. For reference, on a GTX 1080 Ti,

Dataset Metric Training Time
Cora Acc: 81.0 % 0.13s
Citeseer Acc: 71.9 % 0.14s
Pubmed Acc: 78.9 % 0.29s
Reddit F1: 94.9 % 2.7s

This home repo contains the implementation for citation networks (Cora, Citeseer, and Pubmed) and social network (Reddit). We have a work-in-progress branch ablation, containing additional codebase for our ablation studies.

If you find this repo useful, please cite:

@InProceedings{pmlr-v97-wu19e,
  title = 	 {Simplifying Graph Convolutional Networks},
  author = 	 {Wu, Felix and Souza, Amauri and Zhang, Tianyi and Fifty, Christopher and Yu, Tao and Weinberger, Kilian},
  booktitle = 	 {Proceedings of the 36th International Conference on Machine Learning},
  pages = 	 {6861--6871},
  year = 	 {2019},
  publisher = 	 {PMLR},
}

Other reference implementations

Other reference implementations can be found in the follwing libraries. Note that in these examples, the hyperparameters are potentially different and the results would be different from the paper reported ones.

Dependencies

Our implementation works with PyTorch>=1.0.0 Install other dependencies: $ pip install -r requirement.txt

Data

We provide the citation network datasets under data/, which corresponds to the public data splits. Due to space limit, please download reddit dataset from FastGCN and put reddit_adj.npz, reddit.npz under data/.

Usage

Citation Networks: We tune the only hyperparameter, weight decay, with hyperopt and put the resulting hyperparameter under SGC-tuning. See tuning.py for more details on hyperparameter optimization.

$ python citation.py --dataset cora --tuned
$ python citation.py --dataset citeseer --tuned --epochs 150 
$ python citation.py --dataset pubmed --tuned

Reddit:

$ python reddit.py --inductive --test

Downstream

We collect the code base for downstream tasks under downstream. Currently, we are releasing only SGC implementation for text classification.

Acknowledgement

This repo is modified from pygcn, and FastGCN.

We thank Deep Graph Library team for helping providing a reference implementation of SGC and benchmarking SGC in Deep Graph Library. We thank Matthias Fey, author of PyTorch Geometric, for his help on providing a reference implementation of SGC within PyTorch Geometric. We thank Daniele Grattarola, author of Spektral, for his help on providing a reference implementation of SGC within Spektral.

Owner
Tianyi
Tianyi
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining

LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a

Twitter Research 11 Dec 20, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022