Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Related tags

Deep LearningAugSelf
Overview

Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Accepted to NeurIPS 2021

thumbnail

TL;DR: Learning augmentation-aware information by predicting the difference between two augmented samples improves the transferability of representations.

Dependencies

conda create -n AugSelf python=3.8 pytorch=1.7.1 torchvision=0.8.2 cudatoolkit=10.1 ignite -c pytorch
conda activate AugSelf
pip install scipy tensorboard kornia==0.4.1 sklearn

Checkpoints

We provide ImageNet100-pretrained models in this Dropbox link.

Pretraining

We here provide SimSiam+AugSelf pretraining scripts. For training the baseline (i.e., no AugSelf), remove --ss-crop and --ss-color options. For using other frameworks like SimCLR, use the --framework option.

STL-10

CUDA_VISIBLE_DEVICES=0 python pretrain.py \
    --logdir ./logs/stl10/simsiam/aug_self \
    --framework simsiam \
    --dataset stl10 \
    --datadir DATADIR \
    --model resnet18 \
    --batch-size 256 \
    --max-epochs 200 \
    --ss-color 1.0 --ss-crop 1.0

ImageNet100

python pretrain.py \
    --logdir ./logs/imagenet100/simsiam/aug_self \
    --framework simsiam \
    --dataset imagenet100 \
    --datadir DATADIR \
    --batch-size 256 \
    --max-epochs 500 \
    --model resnet50 \
    --base-lr 0.05 --wd 1e-4 \
    --ckpt-freq 50 --eval-freq 50 \
    --ss-crop 0.5 --ss-color 0.5 \
    --num-workers 16 --distributed

Evaluation

Our main evaluation setups are linear evaluation on fine-grained classification datasets (Table 1) and few-shot benchmarks (Table 2).

linear evaluation

CUDA_VISIBLE_DEVICES=0 python transfer_linear_eval.py \
    --pretrain-data imagenet100 \
    --ckpt CKPT \
    --model resnet50 \
    --dataset cifar10 \
    --datadir DATADIR \
    --metric top1

few-shot

CUDA_VISIBLE_DEVICES=0 python transfer_few_shot.py \
    --pretrain-data imagenet100 \
    --ckpt CKPT \
    --model resnet50 \
    --dataset cub200 \
    --datadir DATADIR
Owner
hankook
hankook
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022