Huawei Hackathon 2021 - Sweden (Stockholm)

Overview

huawei-hackathon-2021

Contributors

banner

Challenge

Requirements:

  • python=3.8.10
  • Standard libraries (no importing)

Important factors:

Data dependency between tasks for a Directed Acyclic Graph (DAG).

Task waits until parent tasks finished and data generated by parent reaches current task.

Communication time: The time which takes to send the parents’ data to their children, if they are located on different processing nodes; otherwise it can be assumed negligible. As a result, we prefer to assign communicating tasks on the same processing node.

Assign tasks on the same processing node where possible; if not, make data transfers from parent -> children as fast as possible.

Affinity: It refers to the affinity of a task to its previous instances running on the same processing node that can reduce overhead to initialize the task, such as a lower Instruction Cache Miss. Ideally the task is better to run on the same processing node where its previous instance was recently run.

Reuse processing nodes where possible. I.e. run children tasks on parent node.

Load Balancing of processing nodes: The CPU utilization of processing nodes should be balanced and uniformed.

Self explanitory.

Assumptions

  1. If communicating tasks assigned to the same processing node, the communication time between them is negligible, i.e., equal to 0.

    Using same node reduces communication time to 0.

  2. If the previous instance of the same task is recently assigned to the same processing node, the estimated execution time of the current instance of the task reduces by 10%. For example, if T0 is assigned to PN1, the execution time of the second instance of T0 (denoted by T0’) on PN1 is 9µs, rather than 10µs.

    Using same node reduces processing time by 10%. PN1 = Processing Node 1. T0 = Task 0.

  3. "Recently assigned" can be translated to:
    • If the previous instance of the current task is among the last Χ tasks run on the PN.
    • For this purpose we need to keep, a history of the X recent tasks which run on each PN.

      Log the tasks tracked?

  4. A DAG’s deadline is relative to its release time which denoted by di . For example, if the deadline of a DAG is 3 and the release time of its ith instance is 12, it should be completed before 15.
  5. All time units are in microseconds.
  6. The execution of tasks are non-preemptive, in the sense that a task that starts executing on a processor will not be interrupted by other tasks until its execution is completed.

    Tasks cannot run concurrently on the same processor.

Problem Formulation

Consider a real-time app including n DAGs (DAG1, DAG2, ... DAGn) each of which are periodically released with a period Pk . Instances of each DAG is released over the course of the running application. The ith instance of the kth DAG is denoted by Dk(i). The application is run on x homogenous processing nodes (PN1, PN2, ... PNx). The algorithm should find a solution on how to assign the tasks of DAGs to the PNs so that all DAGs deadlines are respected and the makespan of the given application is minimized. Makespan: The time where all instances of DAGs are completed

Questions:

Propose an algorithm to solve the considered problem to maximize the utility function including both the total application Makespan and the standard deviation of the PN utilizations (i.e., how well-uniform is the assignment) such that both task dependency constraints and DAGs deadlines are met.

Utility Function = 1 / (10 * Normalized(Makespan) + STD(PN utilizations))
Normalized(Makespan) = Makespan / Application_worst_case_completion_time
Application_worst_case_completion_time = SUM(execution_times, DAG_communication_times)
Normalized(Makespan) and STD(PN utilizations) are both values [0..1] Algorithm should specify the assignment of tasks to PNs that maximize utility function. Algorithm should specify the order the tasks are scheduled and execution order of tasks for each PN.

I/O

Input

Scheduler input: 12 test cases consisting of a JSON file that includes:

  • A set of independent DAGs
  • The deadlines for the DAGs
  • Number of instances of each DAG
  • Period (Pk) of the DAGs
  • List of tasks for each DAG
  • Execution times for each DAG
  • Communication (inter-task) times for each DAG __ --> Number of cores mentioned in each test case <--__

Output

A CSV file including:

  • The PN_id of which each task was assigned to (0, 1, ... x)
  • Order of execution of the tasks in their assigned PN
  • Start and finish time of the task
  • Applcation markspan
  • The STD of the clusters' utilization (PN utilization?)
  • Value of the utility function
  • The execution time of the scheduler on our machine.

image

Note for Python coders: If you code in Python, you need to write your own printer function to create the csv files in the specified format.

Owner
Drake Axelrod
Student at University of Göteborg studying Software Engineering & Management.
Drake Axelrod
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022