Action Recognition for Self-Driving Cars

Overview

Action Recognition for Self-Driving Cars

demo img

This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at EPFL VITA lab. For experiment results, please refer to the project report and presenation slides at docs. A demo video is available here.

This project utilizes a simple yet effective architecture (called poseact) to classify multiple actions.

The model has been tested on three datasets, TCG, TITAN and CASR.

drawing

Preparation and Installation

This project mainly depends PyTorch. If you wish to start from extracting poses from images, you would also need OpenPifPaf (along with posetrack plugin), please also refer to this section for following steps. In case you wish to skip extracting your own poses, and directly start from the poses used in this repo, you can download this folder. It contains the poses extracted from TITAN and CASR dataset as well as a trained model for TITAN dataset. For the poses in TCG dataset, please refer to the official repo.

First, clone and install this repo. If you have downloaded the folder above, please put the contents to poseact/out/

Then clone this repo and install in editable mode.

git clone https://github.com/vita-epfl/pose-action-recognition.git
cd Action_Recognition
python -m pip install -e .

Project Structure and usage

poseact
	|___ data # create this folder to store your datasets, or create a symlink 
	|___ models 
	|___ test # debug tests, may also be helpful for basic usage
	|___ tools # preprocessing and analyzing tools, usage stated in the scripts 
	|___ utils # utility functions, such as datasets, losses and metrics 
	|___ xxxx_train.py # training scripts for TCG, TITAN and CASR
	|___ python_wrapper.sh # script for submitting jobs to EPFL IZAR cluster, same for debug.sh
	|___ predictor.py  # a visualization tool with the model trained on TITAN dataset 

It's advised to cd poseact and conda activate pytorch before running the experiments.

To submit jobs to EPFL IZAR cluster (or similar clusters managed by slurm), you can use the script python_wrapper.sh. Just think of it as "the python on the cluster". To submit to debug node of IZAR, you can use the debug.sh

Here is an example to train a model on TITAN dataset. --imbalance focal means using the focal loss, --gamma 0 sets the gamma value of focal loss to 0 (because I find 0 is better :=), --merge_cls means selecting a suitable set of actions from the original actions hierarchy, and--relative_kp means using relative coordinates of the keypoints, see the presentation slides for intuition. You can specify a name for this task with --task_name, which will be used to name the saved model if you use --save_model.

sbatch python_wrapper.sh titan_train.py --imbalance focal --gamma 0 --merge_cls --relative_kp --task_name Relative_KP --save_model

To use the temporal model, you can use --model_type sequence, and maybe you will need to adjust the number of epochs, batch size and learning rate. To use pifpaf track ID instead of ground truth track ID, you can use --track_method pifpaf .

sbatch python_wrapper.sh titan_train.py --model_type sequence --num_epoch 100 --imbalance focal --track_method gt --batch_size 128 --gamma 0 --lr 0.001

For all available training options, please refer to the comments and docstrings in the training scripts.

All the datasets have "train-validate-test" setup, so after the training, you should be able to see a summary of evaluation.

Here is an example

In general, overall accuracy 0.8614 avg Jaccard 0.6069 avg F1 0.7409

For valid_action actions accuracy 0.8614 Jaccard score 0.6069 f1 score 0.9192 mAP 0.7911
Precision for each class: [0.885 0.697 0.72  0.715 0.87]
Recall for each class: [0.956 0.458 0.831 0.549 0.811]
F1 score for each class: [0.919 0.553 0.771 0.621 0.839]
Average Precision for each class is [0.9687, 0.6455, 0.8122, 0.6459, 0.883]
Confusion matrix (elements in a row share the same true label, those in the same columns share predicted):
The corresponding classes are {'walking': 0, 'standing': 1, 'sitting': 2, 'bending': 3, 'biking': 4, 'motorcycling': 4}
[[31411  1172    19   142   120]
 [ 3556  3092    12    45    41]
 [   12     1   157     0    19]
 [  231   160     3   512    26]
 [  268     9    27    17  1375]]

After training and saving the model (to out/trained/), you can use the predictor to visualize results on TITAN (all sequences). Feel free to change the chekpoint to your own trained model, but only the file name is needed, because models are assumed to be out/trained

sbatch python_wrapper.sh predictor.py --function titanseqs --save_dir out/recognition --ckpt TITAN_Relative_KP803217.pth

It's also possible to run on a single sequence with --function titan_single --seq_idx <Number>

or run on a single image with --function image --image_path <path/to/your/image.png>

More about the TITAN dataset

For the TITAN dataset, we first extract poses from the images with OpenPifPaf, and then match the poses to groundtruth accoding to IOU of bounding boxes. After that, we store the poses sequence by sequence, frame by frame, person by person, and you will find corresponding classes in titan_dataset.py.

Preparing poses for TITAN and CASR

This part may be a bit cumbersome and it's advised to use the prepared poses in this folder. If you want to extract the poses yourself, please also download that folder, because poseact/out/titan_clip/example.png is needed as the input to OpenPifPaf.

First, install OpenPifPaf and the posetrack plugin.

For TITAN, download the dataset to poseact/data/TITAN and then

cd poseact
conda activate pytorch # activate the python environment
# run single frame pose detection , wait for the program to complete
sbatch python_wrapper.sh tools/run_pifpaf_on_titan.py --mode single --n_process 6
# run pose tracking, required for temporal model with pifpaf track ID, wait for the program to complete
sbatch python_wrapper.sh tools/run_pifpaf_on_titan.py --mode track --n_process 6
# make the pickle file for single frame model 
python utils/titan_dataset.py --function pickle --mode single
# make the pickle file from pifpaf posetrack result
python utils/titan_dataset.py --function pickle --mode track 

For CASR, you should agree with the terms and conditions required by the authors of CASR

CASR dataset needs some preprocessing, please create the folder poseact/scratch (or link to the scratch on IZAR) and then

cd poseact
conda activate pytorch # activate the python environment
sbatch tools/casr_download.sh # wait for the whole process to complete, takes a long time 
sbatch python_wrapper.sh tools/run_pifpaf_on_casr.py --n_process 6 # wait for this process to complete, again a long time 
python ./utils/casr_dataset.py # now you should have the file out/CASR_pifpaf.pkl

Credits

The poses are extracted with OpenPifPaf.

The model is inspired by MonoLoco and the heuristics are from this work

The code for TCG dataset is adopted from the official repo.

Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022