[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

Overview

DomainMix

[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

[paper] [demo] [Chinese blog]

DomainMix works fine on both PaddlePaddle and PyTorch.

Framework:

Requirement

  • Python 3.7
  • Pytorch 1.7.0
  • sklearn 0.23.2
  • PIL 5.4.1
  • Numpy 1.19.4
  • Torchvision 0.8.1

Reproduction Environment

  • Test our models: 1 Tesla V100 GPU.
  • Train new models: 4 Telsa V100 GPUs.
  • Note that the required for GPU is not very strict, and 6G memory per GPU is minimum.

Preparation

  1. Dataset

We evaluate our algorithm on RandPerson, Market-1501, CUHK03-NP and MSMT17. You should download them by yourselves and prepare the directory structure like this:

*DATA_PATH
      *data
         *randperson_subset
             *randperson_subset
                 ...
         *market1501
             *Market-1501-v15.09.15
                 *bounding_box_test
                 ...
         *cuhk03_np
             *detected
             *labeled
         *msmt17
             *MSMT17_V1
                 *test
                 *train
                 ...
  1. Pretrained Models

We use ResNet-50 and IBN-ResNet-50 as backbones. The pretrained models for ResNet-50 will be downloaded automatically. When training with the backbone of IBN-ResNet-50, you should download the pretrained models from here, and save it like this:

*DATA_PATH
      *logs
         *pretrained
             resnet50_ibn_a.pth.tar
  1. Our Trained Models

We provide our trained models as follows. They should be saved in ./logs/trained

Market1501:

DomainMix(43.5% mAP) DomainMix-IBN(45.7% mAP)

CUHK03-NP:

DomainMix(16.7% mAP) DomainMix-IBN(18.3% mAP)

MSMT17:

DomainMix(9.3% mAP) DomainMix-IBN(12.1% mAP)

Train

We use RandPerson+MSMT->Market as an example, other DG tasks will follow similar pipelines.

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py \
-dsy randperson_subset -dre msmt17 -dun market1501 \
-a resnet50 --margin 0.0 --num-instances 4 -b 64 -j 4 --warmup-step 5 \
--lr 0.00035 --milestones 10 15 30 40 50 --iters 2000 \
--epochs 60 --eval-step 1 --logs-dir logs/randperson_subsetmsTOm/domainmix

Test

We use RandPerson+MSMT->Market as an example, other DG tasks will follow similar pipelines.

CUDA_VISIBLE_DEVICES=0 python test.py -b 256 -j 8 --dataset-target market1501 -a resnet50 \
--resume logs/trained/model_best_435.pth.tar

Acknowledgement

Some parts of our code are from MMT and SpCL. Thanks Yixiao Ge for her contribution.

Citation

If you find this code useful for your research, please cite our paper

@inproceedings{
  wang2021domainmix,
  title={DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations},
  author={Wenhao Wang and Shengcai Liao and Fang Zhao and Kangkang Cui and Ling Shao},
  booktitle={British Machine Vision Conference},
  year={2021}
}
Owner
Wenhao Wang
I am a student from Beihang University. My research interests include person re-identification, unsupervised domain adaptation, and domain generalization.
Wenhao Wang
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
RGB-stacking 🛑 🟩 🔷 for robotic manipulation

RGB-stacking 🛑 🟩 🔷 for robotic manipulation BLOG | PAPER | VIDEO Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes, Alex X. Lee*,

DeepMind 95 Dec 23, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Özlem Taşkın 0 Feb 23, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023