Open Source Light Field Toolbox for Super-Resolution

Overview

BasicLFSR

BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection of papers on LF image SR and a benchmark to comprehensively evaluate the performance of existing methods. We also provided simple pipelines to train/valid/test state-of-the-art methods to get started quickly, and you can transform your methods into the benchmark.

Note: This repository will be updated on a regular basis, and the pretrained models of existing methods will be open-sourced one after another. So stay tuned!

Methods

Methods Paper Repository
LFSSR Light Field Spatial Super-Resolution Using Deep Efficient Spatial-Angular Separable Convolution. TIP2018 spatialsr/
DeepLightFieldSSR
resLF Residual Networks for Light Field Image Super-Resolution. CVPR2019 shuozh/resLF
HDDRNet High-Dimensional Dense Residual Convolutional Neural Network for Light Field Reconstruction. TPAMI2019 monaen/
LightFieldReconstruction
LF-InterNet Spatial-Angular Interaction for Light Field Image Super-Resolution. ECCV2019 YingqianWang/
LF-InterNet
LFSSR-ATO Light field spatial super-resolution via deep combinatorial geometry embedding and structural consistency regularization. CVPR2020 jingjin25/
LFSSR-ATO
LF-DFnet Light field image super-resolution using deformable convolution. TIP2020 YingqianWang/
LF-DFnet
MEG-Net End-to-End Light Field Spatial Super-Resolution Network using Multiple Epipolar Geometry. TIP2021 shuozh/MEG-Net

Datasets

We used the EPFL, HCInew, HCIold, INRIA and STFgantry datasets for both training and test. Please first download our datasets via Baidu Drive (key:7nzy) or OneDrive, and place the 5 datasets to the folder ./datasets/.

  • After downloading, you should find following structure:

    ├──./datasets/
    │    ├── EPFL
    │    │    ├── training
    │    │    │    ├── Bench_in_Paris.mat
    │    │    │    ├── Billboards.mat
    │    │    │    ├── ...
    │    │    ├── test
    │    │    │    ├── Bikes.mat
    │    │    │    ├── Books__Decoded.mat
    │    │    │    ├── ...
    │    ├── HCI_new
    │    ├── ...
    
  • Run Generate_Data_for_Training.m to generate training data. The generated data will be saved in ./data_for_train/ (SR_5x5_2x, SR_5x5_4x).

  • Run Generate_Data_for_Test.m to generate test data. The generated data will be saved in ./data_for_test/ (SR_5x5_2x, SR_5x5_4x).

Benchmark

We benchmark several methods on above datasets, and PSNR and SSIM metrics are used for quantitative evaluation.

PSNR and SSIM values achieved by different methods for 2xSR:

Method Scale #Params. EPFL HCInew HCIold INRIA STFgantry Average
Bilinear x2 -- 28.479949/0.918006 30.717944/0.919248 36.243278/0.970928 30.133901/0.945545 29.577468/0.931030 31.030508/0.936951
Bicubic x2 -- 29.739509/0.937581 31.887011/0.935637 37.685776/0.978536 31.331483/0.957731 31.062631/0.949769 32.341282/0.951851
VDSR x2
EDSR x2 33.088922/0.962924 34.828374/0.959156 41.013989/0.987400 34.984982/0.976397 36.295865/0.981809
RCSN x2
resLF x2
LFSSR x2 33.670594/0.974351 36.801555/0.974910 43.811050/0.993773 35.279443/0.983202 37.943969/0.989818
LF-ATO x2 34.271635/0.975711 37.243620/0.976684 44.205264/0.994202 36.169943/0.984241 39.636445/0.992862
LF-InterNet x2
LF-DFnet x2
MEG-Net x2
LFT x2

PSNR and SSIM values achieved by different methods for 4xSR:

Method Scale #Params. EPFL HCInew HCIold INRIA STFgantry Average
Bilinear x4 -- 24.567490/0.815793 27.084949/0.839677 31.688225/0.925630 26.226265/0.875682 25.203262/0.826105 26.954038/0.856577
Bicubic x4 -- 25.264206/0.832389 27.714905/0.851661 32.576315/0.934428 26.951718/0.886740 26.087451/0.845230 27.718919/0.870090
VDSR x4
EDSR x4
RCSN x4
resLF x4
LFSSR x4
LF-ATO x4
LF-InterNet x4
LF-DFnet x4
MEG-Net x4
LFT x4

Train

  • Run train.py to perform network training. Example for training [model_name] on 5x5 angular resolution for 2x/4x SR:
    $ python train.py --model_name [model_name] --angRes 5 --scale_factor 2 --batch_size 8
    $ python train.py --model_name [model_name] --angRes 5 --scale_factor 4 --batch_size 4
    
  • Checkpoints and Logs will be saved to ./log/, and the ./log/ has following structure:
    ├──./log/
    │    ├── SR_5x5_2x
    │    │    ├── [dataset_name]
    │    │         ├── [model_name]
    │    │         │    ├── [model_name]_log.txt
    │    │         │    ├── checkpoints
    │    │         │    │    ├── [model_name]_5x5_2x_epoch_01_model.pth
    │    │         │    │    ├── [model_name]_5x5_2x_epoch_02_model.pth
    │    │         │    │    ├── ...
    │    │         │    ├── results
    │    │         │    │    ├── VAL_epoch_01
    │    │         │    │    ├── VAL_epoch_02
    │    │         │    │    ├── ...
    │    │         ├── [other_model_name]
    │    │         ├── ...
    │    ├── SR_5x5_4x
    

Test

  • Run test.py to perform network inference. Example for test [model_name] on 5x5 angular resolution for 2x/4xSR:

    $ python test.py --model_name [model_name] --angRes 5 --scale_factor 2  
    $ python test.py --model_name [model_name] --angRes 5 --scale_factor 4 
    
  • The PSNR and SSIM values of each dataset will be saved to ./log/, and the ./log/ is following structure:

    ├──./log/
    │    ├── SR_5x5_2x
    │    │    ├── [dataset_name]
    │    │        ├── [model_name]
    │    │        │    ├── [model_name]_log.txt
    │    │        │    ├── checkpoints
    │    │        │    │   ├── ...
    │    │        │    ├── results
    │    │        │    │    ├── Test
    │    │        │    │    │    ├── evaluation.xls
    │    │        │    │    │    ├── [dataset_1_name]
    │    │        │    │    │    │    ├── [scene_1_name]
    │    │        │    │    │    │    │    ├── [scene_1_name]_CenterView.bmp
    │    │        │    │    │    │    │    ├── [scene_1_name]_SAI.bmp
    │    │        │    │    │    │    │    ├── views
    │    │        │    │    │    │    │    │    ├── [scene_1_name]_0_0.bmp
    │    │        │    │    │    │    │    │    ├── [scene_1_name]_0_1.bmp
    │    │        │    │    │    │    │    │    ├── ...
    │    │        │    │    │    │    │    │    ├── [scene_1_name]_4_4.bmp
    │    │        │    │    │    │    ├── [scene_2_name]
    │    │        │    │    │    │    ├── ...
    │    │        │    │    │    ├── [dataset_2_name]
    │    │        │    │    │    ├── ...
    │    │        │    │    ├── VAL_epoch_01
    │    │        │    │    ├── ...
    │    │        ├── [other_model_name]
    │    │        ├── ...
    │    ├── SR_5x5_4x
    

Recources

We provide some original super-resolved images and useful resources to facilitate researchers to reproduce the above results.

Other Recources

Contact

Any question regarding this work can be addressed to [email protected].

Owner
Squidward
Squidward
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023