Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

Overview

DisUnknown: Distilling Unknown Factors for Disentanglement Learning

See introduction on our project page

Requirements

  • PyTorch >= 1.8.0
  • PyYAML, for loading configuration files
  • Optional: h5py, for using the 3D Shapes dataset
  • Optional: Matplotlib, for plotting sample distributions in code space

Preparing Datasets

Dataset classes and default configurations are provided for the following datasets. See below for how to add new datasets, or you can open an issue and the author might consider adding it. Some datasets need to be prepared before using:

$ python disentangler.py prepare_data <dataset_name> --data_path </path/to/dataset>

If the dataset does not have a standard training/test split it will be split randomly. Use the --test_portion <portion> option to set the portion of test samples. Some dataset have additional options.

  • MNIST, Fashion-MNIST, QMNIST, SVHN
    • Dataset names are mnist, fashion_mnist, qmnist, svhn.
    • data_path should be the same as those for the built-in dataset classes provided by torchvision.
    • We use the full NIST digit dataset from QMNIST (what = 'nist') and it needs to be split.
    • For SVHN, set include_extra: true in dataset_args in the configuration file (this is the default) to include the extra training images in the training set.
  • 3D Chairs
    • Dataset name is chairs.
    • data_path should be the folder containing the rendered_chairs folder.
    • Needs to be split.
    • You may use --compress to down-sample all images and save them as a NumPy array of PNG-encoded bytes. Use --downsample_size <size> to set image size, default to 128. Note that this does not dictate the training-time image size, which is configured separately. Compressing the images speeds up training only slightly if a multi-processing dataloader is used but makes plotting significantly faster.
    • Unrelated to this work, but the author wants to note that this dataset curiously contains 31 azimuth angles times two altitudes for a total of 62 images for each chair with image id 031 skipped, apparently because 32 was the intended number of azimuth angles but when they rendered the images those angles were generated using numpy.linspace(0, 360, 32), ignoring the fact that 0 and 360 are the same angle, then removed the duplicated images 031 and 063 after they realized the mistake. Beware of off-by-one errors in linspace, especially if it is also circular!
  • 3D shapes
    • Dataset name is 3dshapes.
    • data_path should be the folder containing 3dshapes.h5.
    • Needs to be split.
    • You may use --compress to extract all images and then save them as a NumPy array of PNG-encoded bytes. This is mainly for space-saving: the original dataset, when extracted from HDFS, takes 5.9GB of memory. The re-compressed version takes 2.2GB. Extraction and compression takes about an hour.
  • dSprites
    • Dataset name is dsprites
    • data_path should be the folder containing the .npz file.
    • Needs to be split.
    • This dataset is problematic. I found that orientation 0 and orientation 39 are the same, and presumably that was because similar to 3D Chairs something like linspace(0, 360, 40) was used to generate the angles. So yes, I'm telling you again, beware of off-by-one errors in linspace, especially if it is also circular! Anyway in my dataset class I discarded orientation 39, so there are only 39 different orientations and 3 * 6 * 39 * 32 * 32 = 718848 images.
    • The bigger problem is that each of the three shapes (square, ellipse, heart) has a different symmetry. For hearts, each image uniquely determines an orientation angle; for ellipses, each image has two possible orientation angles; and for squares, each image has four possible orientation angles. They managed to make the dataset so that (apart from orientation 0 and 39 being the same) different orientations correspond to different images because 2 and 4 are not divisors of 39 (which makes me wonder if the off-by-one error was intentional) but the orientation is still conceptually wrong, since if you consider the orientation angles of ellipses modulo 180 or the orientation angles of squares modulo 90, then the orientation class IDs are not ordered in increasing order of orientation angles. Instead the orientation angles of ellipses go around twice in this range and the orientation angles of squares go around four times. To solve this problem, I included an option to set relabel_orientation: true in dataset_args in the configuration file (this is the default) which will cause the orientation of ellipses and squares to be re-labeled in the correct order. Specifically, for ellipses orientation t is re-labeled as (t * 2) % 39 and for squares orientation t is re-labeled as (t * 4) % 39. But still, this causes ellipses to rotate twice as slowly and squares to rotate four times as slowly when the orientation increases, which is still not ideal. When shapes with different symmetries are mixed there is simply no easy solution, and do not expect good results on this dataset if the unknown factor contains the orientation.
    • --compress does the same thing as in 3D Shapes.

Training

To train, use

$ python disentangler.py train --config_file </path/to/config/file> --save_path </path/to/save/folder>

The configuration file is in YAML. See the commented example for explanations. If config_file is omitted, it is expected that save_path already exists and contains config.yaml. Otherwise save_path will be created if it does not exist, and config_file will be copied into it. If save_path already contains a previous training run that has been halted, it will by default resume from the latest checkpoint. --start_from <stage_name> [<iteration>] can be used to choose another restarting point. --start_from stage1 to restart from scratch. Specifying --data_path or --device will override those settings in the configuration file.

Although our goal is to deal with the cases where some factors are labeled and some factors are unknown, it feels wrong not to extrapolate to the cases where all factors are labeled or where all factors are unknown. Wo do allow these, but some parts of our method will become unnecessary and will be discarded accordingly. In particular if all factors are unknown then we just train a VAE in stage I and then a GAN having the same code space in stage II, so you can use this code for just training a GAN. We don't have the myriad of GAN tricks though.

Meaning of Visualization Images

During training, images generated for visualization will be saved in the subfolder samples. test_images.jpg contains images from the test set in even-numbered columns (starting from zero), with odd-numbered columns being empty. The generated images will contain corresponding reconstructed images in even-numbered columns, while each image in odd-numbered columns is generated by combining the unknown code from its left and the labeled code from its right (warp to the next row).

Example test images:

Test images

Example generated images:

Generated_images

Adding a New Dataset

__init__() should accept four positional arguments root, part, labeled_factors, transform in that order, plus any additional keyword arguments that one expects to receive from dataset_args in the configuration file. root is the path to the dataset folder. transform is as usual. part can be train, test or plot, specifying which subset of the dataset to load. The plotting set is generally the same as the test set, but part = 'plot' is passed in so that a smaller plotting set can be used if the test set is too large.

labeled_factors is a list of factor names. __getitem__() should return a tuple (image, labels) where image is the image and labels is a one-dimensional PyTorch tensor of type torch.int64, containing the labels for that image in the order listed in labeled_factors. labels should always be a one-dimensional tensor even if there is only one labeled factor, not a Python int or a zero-dimensional tensor. If labeled_factors is empty then __getitem__() should return image only.

In addition, metadata about the factors should be available in the following properties: nclass should be a list of ints containing the number of classes of each factor, and class_freq should be a list of PyTorch tensors, each being one-dimensional, containing the distribution of classes of each factor in (the current split of) the dataset.

If any preparation is required, implement a static method prepare_data(args) where args is a return value of argparse.ArgumentParser.parse_args(), containing properties data_path and test_portion by default. If additional command-line arguments are needed, implement a static method add_prepare_args(parser) where parser.add_argument() can be called.

Finally add it to the dictionary of recognized datasets in data/__init__.py.

Default configuration should also be created as default_config/datasets/<dataset_name>.yaml. It should at a minimum contain image_size, image_channels and factors. factors has the same syntax as labeled_factors as explained in the example training configuration. It should contain a complete list of all factors. In particular, if the dataset does not include a complete set of labels, there should be a factor called unknown which will become the default unknown factor if labeled_factors is not set in the training configuration.

Any additional settings in the default configuration will override global defaults in default_config/default_config.yaml.

Citing This Work (BibTeX)

@inproceedings{xiang2021disunknown,
  title={DisUnknown: Distilling Unknown Factors for Disentanglement Learning},
  author={Xiang, Sitao and Gu, Yuming and Xiang, Pengda and Chai, Menglei and Li, Hao and Zhao, Yajie and He, Mingming},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={14810--14819},
  year={2021}
}
Owner
Sitao Xiang
Computer Graphics PhD student at University of Southern California. Twitter: StormRaiser123
Sitao Xiang
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021