Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Related tags

Deep LearningTSP-HAC
Overview

Paper

For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted at AAAI 2022. If this code is useful for your work, please cite our paper:

@inproceedings{zhang2022learning,
  title={Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum},
  author={Zeyang Zhang and Ziwei Zhang and Xin Wang and Wenwu Zhu},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2022}
}

Dependencies

Require python>=3.8

Install other packages

pip install torch matplotlib scipy tqdm tensorboard sklearn jupyter jupyterlab pandas gurobipy seaborn tensorboardX

And follow https://github.com/wouterkool/attention-learn-to-route to install Gurobi Solver. In short, it can be installed by conda:

conda config --add channels http://conda.anaconda.org/gurobi
conda install gurobi

Or manually: Find and download the package in https://anaconda.org/Gurobi/gurobi/files?page=0, then use conda install.

Usage

  1. generate data This step generates necessary TSP Instances for experiments.
python src/generate_data.py --problem tsp --graph_sizes 50 --name val_mg --seed 2222 --dataset_size 10000 --generate_type mg
python src/generate_data.py --problem tsp --graph_sizes 50 --name train --seed 1111 --dataset_size 10000 --generate_type random -f 
python preprocess.py
  1. preliminary study This step shows the optimality gaps of TSP instances generated from gaussian mixture generator as $c_{\text{dist}}$ increases
python preliminary.py
  1. Hardness-adaptive generator This step shows the optimality gaps of TSP instances generated from hardness-adaptive generator as $\eta$ increases
python hag.py
  1. Hardness-adaptive Curriculum This step shows the optimality gaps with or without hardness-adaptive curriculum. In this case, training data and testing data is from uniform and gaussian mixture respectively. Replace 'X' with GPU device id.
CUDA_VISIBLE_DEVICES=X python main.py --train_type uniform --iters 15
CUDA_VISIBLE_DEVICES=X python main.py --train_type hardness-adaptive --iters 15
  1. showcase This step shows some cases of instances generated by hardness-adaptive generator.
python showcase.py

Acknowledgements

This repo is modified mainly based on the code https://github.com/wouterkool/attention-learn-to-route.

Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Rethinking Nearest Neighbors for Visual Classification

Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin

Menglin Jia 29 Oct 11, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022