CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Related tags

Deep LearningCLADE
Overview

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

Architecture

ArXiv Paper

Zhentao Tan, Dongdong Chen, Qi Chu, Menglei Chai, Jing Liao, Mingming He, Lu Yuan, Gang Hua, Nenghai Yu

Abstract

Spatially-adaptive normalization SPADE is remarkably successful recently in conditional semantic image synthesis, which modulates the normalized activation with spatially-varying transformations learned from semantic layouts, to prevent the semantic information from being washed away. Despite its impressive performance, a more thorough understanding of the advantages inside the box is still highly demanded to help reduce the significant computation and parameter overhead introduced by this novel structure. In this paper, from a return-on-investment point of view, we conduct an in-depth analysis of the effectiveness of this spatially-adaptive normalization and observe that its modulation parameters benefit more from semantic-awareness rather than spatial-adaptiveness, especially for high-resolution input masks. Inspired by this observation, we propose class-adaptive normalization (CLADE), a lightweight but equally-effective variant that is only adaptive to semantic class. In order to further improve spatial-adaptiveness, we introduce intra-class positional map encoding calculated from semantic layouts to modulate the normalization parameters of CLADE and propose a truly spatially-adaptive variant of CLADE, namely CLADE-ICPE. %Benefiting from this design, CLADE greatly reduces the computation cost while being able to preserve the semantic information in the generation. Through extensive experiments on multiple challenging datasets, we demonstrate that the proposed CLADE can be generalized to different SPADE-based methods while achieving comparable generation quality compared to SPADE, but it is much more efficient with fewer extra parameters and lower computational cost.

Installation

Clone this repo.

git clone https://github.com/tzt101/CLADE.git
cd CLADE/

This code requires PyTorch 1.6 and python 3+. Please install dependencies by

pip install -r requirements.txt

Dataset Preparation

The Cityscapes, COCO-Stuff and ADE20K dataset can be download and prepared following SPADE. We provide the ADE20K-outdoor dataset selected by ourselves in OneDrive.

To make the distance mask which called intra-class positional encoding map in the paper, you can use the following commands:

python uitl/cal_dist_masks.py --path [Path_to_dataset] --dataset [ade20k | coco | cityscapes]

By default, the distance mask is normalized. If you do not want it, please set --norm no.

Generating Images Using Pretrained Model

Once the dataset is ready, the result images can be generated using pretrained models.

  1. Download the pretrained models from the OneDrive, save it in checkpoints/. The structure is as follows:
./checkpoints/
    ade20k/
        best_net_G.pth
    ade20k_dist/
        best_net_G.pth
    ade20k_outdoor/
        best_net_G.pth
    ade20k_outdoor_dist/
        best_net_G.pth
    cityscapes/
        best_net_G.pth
    cityscapes_dist/
        best_net_G.pth
    coco/
        best_net_G.pth
    coco_dist/
        best_net_G.pth

_dist means that the model use the additional positional encoding, called CLADE-ICPE in the paper.

  1. Generate the images on the test dataset.
python test.py --name [model_name] --norm_mode clade --batchSize 1 --gpu_ids 0 --which_epoch best --dataset_mode [dataset] --dataroot [Path_to_dataset]

[model_name] is the directory name of the checkpoint file downloaded in Step 1, such as ade20k and coco. [dataset] can be on of ade20k, ade20koutdoor, cityscapes and coco. [Path_to_dataset] is the path to the dataset. If you want to test CALDE-ICPE, the command is as follows:

python test.py --name [model_name] --norm_mode clade --batchSize 1 --gpu_ids 0 --which_epoch best --dataset_mode [dataset] --dataroot [Path_to_dataset] --add_dist

Training New Models

You can train your own model with the following command:

# To train CLADE and CLADE-ICPE.
python train.py --name [experiment_name] --dataset_mode [dataset] --norm_mode clade --dataroot [Path_to_dataset]
python train.py --name [experiment_name] --dataset_mode [dataset] --norm_mode clade --dataroot [Path_to_dataset] --add_dist

If you want to test the model during the training step, please set --train_eval. By default, the model every 10 epoch will be test in terms of FID. Finally, the model with best FID score will be saved as best_net_G.pth.

Calculate FID

We provide the code to calculate the FID which is based on rpo. We have pre-calculated the distribution of real images (all images are resized to 256×256 except cityscapes is 512×256) in training set of each dataset and saved them in ./datasets/train_mu_si/. You can run the following command:

python fid_score.py [Path_to_real_image] [Path_to_fake_image] --batch-size 1 --gpu 0 --load_np_name [dataset] --resize [Size]

The provided [dataset] are: ade20k, ade20koutdoor, cityscapes and coco. You can save the new dataset by replacing --load_np_name [dataset] with --save_np_name [dataset].

New Useful Options

The new options are as follows:

  • --use_amp: if specified, use AMP training mode.
  • --train_eval: if sepcified, evaluate the model during training.
  • --eval_dims: the default setting is 2048, Dimensionality of Inception features to use.
  • --eval_epoch_freq: the default setting is 10, frequency of calculate fid score at the end of epochs.

Code Structure

  • train.py, test.py: the entry point for training and testing.
  • trainers/pix2pix_trainer.py: harnesses and reports the progress of training.
  • models/pix2pix_model.py: creates the networks, and compute the losses
  • models/networks/: defines the architecture of all models
  • options/: creates option lists using argparse package. More individuals are dynamically added in other files as well. Please see the section below.
  • data/: defines the class for loading images and label maps.

Citation

If you use this code for your research, please cite our papers.

@article{tan2021efficient,
  title={Efficient Semantic Image Synthesis via Class-Adaptive Normalization},
  author={Tan, Zhentao and Chen, Dongdong and Chu, Qi and Chai, Menglei and Liao, Jing and He, Mingming and Yuan, Lu and Hua, Gang and Yu, Nenghai},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}
@article{tan2020rethinking,
  title={Rethinking Spatially-Adaptive Normalization},
  author={Tan, Zhentao and Chen, Dongdong and Chu, Qi and Chai, Menglei and Liao, Jing and He, Mingming and Yuan, Lu and Yu, Nenghai},
  journal={arXiv preprint arXiv:2004.02867},
  year={2020}
}
@article{tan2020semantic,
  title={Semantic Image Synthesis via Efficient Class-Adaptive Normalization},
  author={Tan, Zhentao and Chen, Dongdong and Chu, Qi and Chai, Menglei and Liao, Jing and He, Mingming and Yuan, Lu and Gang Hua and Yu, Nenghai},
  journal={arXiv preprint arXiv:2012.04644},
  year={2020}
}

Acknowledgments

This code borrows heavily from SPADE.

The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Yada Martins Tisan 3 Oct 31, 2021
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022