DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Overview

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures

PWC

Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polarity_csv.tgz
https://www.kaggle.com/rtatman/deceptive-opinion-spam-corpus
The data includes 1,569,264 samples from the Yelp Dataset Challenge 2015. This subset has 280,000 training samples and 19,000 test samples in each polarity.
**Also, if you happen to refer my work, a citation would do wonders for me. Thanks! **
The following implementations are done:

  1. Bidirectional LSTM with GLoVE 50D word embeddings
  2. LSTM with GLoVE 100D word embeddings
  3. LSTM with GLoVE 300D word embeddings
  4. CNN-LSTM with Doc2Vec and TF-IDF
  5. Attention mechanism with GLoVe 100D word embeddings
  6. Logistic Regression
  7. Multinomial Naive Bayes
  8. Support Vector Machine - Stochastic Gradient Descent (SGD)

The results obtained were as follows:

Sr. No. Model Accuracy (%) Precision Score Recall Score F1 Score
1 MultinomialNB 90.25 0.9325 0.8601
2 Stochastic Gradient Descent (SGD) 87.75 0.8913 0.8497
3 Logistic Regression 87.00 0.8691 0.8601
4 Support Vector Machine 56.25 0.525 0.9792
5 Gaussian Naive Bayes 63.5 0.6424 0.6169
6 K-Nearest Neighbour 57.5 0.8604 0.1840
7 Decision tree 68.5 0.6681 0.7412
Model Training accuracy(%) Testing accuracy(%)
Bidirectional LSTM + GLoVe(50D) 92.17 88.13
LSTM + GLoVe(100D) 99.18 85.75
CNN + LSTM + Doc2Vec +TF-IDF 96.23 92.19
CNN + Attention + GLoVe(100D) 99.00 90.25
BiLSTM + Attention + GLoVe(100D) 99.18 89.27
CNN + BiLSTM + Attention + GLoVe(100D) 99.75 81.25
LogisticRegression + TF-IDF 99.11 87.21

Future scope includes improvement in the attention layer to increase testing accuracy. BERT and XLNet can be implemented to improve the performance further.

Owner
Ashish Salunkhe
Full Stack Developer. Interests in NLP, Knowledge Graphs and Product Dev
Ashish Salunkhe
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021