Experiments with differentiable stacks and queues in PyTorch

Related tags

Deep LearningStackNN
Overview

Please use stacknn-core instead!


StackNN

This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in such a way that it should be easy to integrate them into your own models. For example, to construct a differentiable stack and perform a push:

from StackNN.structs import Stack
stack = Stack(BATCH_SIZE, STACK_VECTOR_SIZE)
read_vectors = stack(value_vectors, pop_strengths, push_strengths)

For examples of more complex use cases of this library, refer to the industrial-stacknns repository.

All the code in this repository is associated with the paper Context-Free Transductions with Neural Stacks, which appeared at the Analyzing and Interpreting Neural Networks for NLP workshop at EMNLP 2018. Refer to our paper for more theoretical background on differentiable data structures.

Running a demo

Check example.ipynb for the most up-to-date demo code.

There are several experiment configurations pre-defined in configs.py. To train a model on one of these configs, do:

python run.py CONFIG_NAME

For example, to train a model on the string reversal task:

python run.py final_reverse_config

In addition to the experiment configuration argument, run.py takes several flags:

  • --model: Model type (BufferedModel or VanillaModel)
  • --controller: Controller type (LinearSimpleStructController, LSTMSimpleStructController, etc.)
  • --struct: Struct type (Stack, NullStruct, etc.)
  • --savepath: Path for saving a trained model
  • --loadpath: Path for loading a model

Documentation

You can find auto-generated documentation here.

Contributing

This project is managed by Computational Linguistics at Yale. We welcome contributions from outside in the form of pull requests. Please report any bugs in the GitHub issues tracker. If you are a Yale student interested in joining our lab, please contact Bob Frank.

Citations

If you use this codebase in your research, please cite the associated paper:

@inproceedings{hao-etal-2018-context,
    title = "Context-Free Transductions with Neural Stacks",
    author = "Hao, Yiding  and
      Merrill, William  and
      Angluin, Dana  and
      Frank, Robert  and
      Amsel, Noah  and
      Benz, Andrew  and
      Mendelsohn, Simon",
    booktitle = "Proceedings of the 2018 {EMNLP} Workshop {B}lackbox{NLP}: Analyzing and Interpreting Neural Networks for {NLP}",
    month = nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/W18-5433",
    pages = "306--315",
    abstract = "This paper analyzes the behavior of stack-augmented recurrent neural network (RNN) models. Due to the architectural similarity between stack RNNs and pushdown transducers, we train stack RNN models on a number of tasks, including string reversal, context-free language modelling, and cumulative XOR evaluation. Examining the behavior of our networks, we show that stack-augmented RNNs can discover intuitive stack-based strategies for solving our tasks. However, stack RNNs are more difficult to train than classical architectures such as LSTMs. Rather than employ stack-based strategies, more complex stack-augmented networks often find approximate solutions by using the stack as unstructured memory.",
}

Dependencies

The core implementation of the data structures is stable in Python 2 and 3. The specific tasks that we have implemented require Python 2.7. We use PyTorch version 0.4.1, with the following additional dependencies:

  • numpy
  • scipy (for data processing)
  • matplotlib (for visualization)
  • nltk

Using pip or conda should suffice for installing most of these dependencies. To get the right command for installing PyTorch, refer to the installation widget on the PyTorch website.

Models

A model is a pairing of a controller network with a neural data structure. There are two kinds of models:

  • models.VanillaModel is a simple controller-data structure network. This means there will be one step of computation per input.
  • models.BufferedModel adds input and output buffers to the vanilla model. This allows the network to run for extra computation steps.

To use a model, call model.forward() on every input and model.init_controller() whenever you want to reset the stack between inputs. You can find example training logic in the tasks package.

Data structures

  • structs.Stack implements the differentiable stack data structure.
  • structs.Queue implements the differentiable queue data structure.

The buffered models use read-only and write-only versions of the differentiable queue for their input and output buffers.

Tasks

The Task class defines specific tasks that models can be trained on. Below are some formal language tasks that we have explored using stack models.

String reversal

The ReverseTask trains a feed-forward controller network to do string reversal. The code generates 800 random binary strings which the network must reverse in a sequence-to-sequence fashion:

Input:   1 1 0 1 # # # #
Label:   # # # # 1 0 1 1

By 10 epochs, the model tends to achieve 100% accuracy. The config for this task is called final_reverse_config.

Context-free language modelling

CFGTask can be used to train a context-free language model. Many interesting questions probing linguistic structure can be reduced to special cases of this general task. For example, the task can be used to model a language of balanced parentheses. The configuration for the parentheses task is final_dyck_config.

Evaluation tasks

We also have a class for evaluation tasks. These are tasks where output i can be succintly expressed as some function of inputs 0, .., i. Some applications of this are evaluation of parity and reverse polish boolean formulae.

Real datasets

The data folder contains several real datasets that the stack can be trained on. We should implement a task for reading in these datasets.

Owner
Will Merrill
NLP x linguistics x theory w/ AllenNLP.
Will Merrill
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

Xinshi Chen 2 Dec 20, 2021
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022