Experiments with differentiable stacks and queues in PyTorch

Related tags

Deep LearningStackNN
Overview

Please use stacknn-core instead!


StackNN

This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in such a way that it should be easy to integrate them into your own models. For example, to construct a differentiable stack and perform a push:

from StackNN.structs import Stack
stack = Stack(BATCH_SIZE, STACK_VECTOR_SIZE)
read_vectors = stack(value_vectors, pop_strengths, push_strengths)

For examples of more complex use cases of this library, refer to the industrial-stacknns repository.

All the code in this repository is associated with the paper Context-Free Transductions with Neural Stacks, which appeared at the Analyzing and Interpreting Neural Networks for NLP workshop at EMNLP 2018. Refer to our paper for more theoretical background on differentiable data structures.

Running a demo

Check example.ipynb for the most up-to-date demo code.

There are several experiment configurations pre-defined in configs.py. To train a model on one of these configs, do:

python run.py CONFIG_NAME

For example, to train a model on the string reversal task:

python run.py final_reverse_config

In addition to the experiment configuration argument, run.py takes several flags:

  • --model: Model type (BufferedModel or VanillaModel)
  • --controller: Controller type (LinearSimpleStructController, LSTMSimpleStructController, etc.)
  • --struct: Struct type (Stack, NullStruct, etc.)
  • --savepath: Path for saving a trained model
  • --loadpath: Path for loading a model

Documentation

You can find auto-generated documentation here.

Contributing

This project is managed by Computational Linguistics at Yale. We welcome contributions from outside in the form of pull requests. Please report any bugs in the GitHub issues tracker. If you are a Yale student interested in joining our lab, please contact Bob Frank.

Citations

If you use this codebase in your research, please cite the associated paper:

@inproceedings{hao-etal-2018-context,
    title = "Context-Free Transductions with Neural Stacks",
    author = "Hao, Yiding  and
      Merrill, William  and
      Angluin, Dana  and
      Frank, Robert  and
      Amsel, Noah  and
      Benz, Andrew  and
      Mendelsohn, Simon",
    booktitle = "Proceedings of the 2018 {EMNLP} Workshop {B}lackbox{NLP}: Analyzing and Interpreting Neural Networks for {NLP}",
    month = nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/W18-5433",
    pages = "306--315",
    abstract = "This paper analyzes the behavior of stack-augmented recurrent neural network (RNN) models. Due to the architectural similarity between stack RNNs and pushdown transducers, we train stack RNN models on a number of tasks, including string reversal, context-free language modelling, and cumulative XOR evaluation. Examining the behavior of our networks, we show that stack-augmented RNNs can discover intuitive stack-based strategies for solving our tasks. However, stack RNNs are more difficult to train than classical architectures such as LSTMs. Rather than employ stack-based strategies, more complex stack-augmented networks often find approximate solutions by using the stack as unstructured memory.",
}

Dependencies

The core implementation of the data structures is stable in Python 2 and 3. The specific tasks that we have implemented require Python 2.7. We use PyTorch version 0.4.1, with the following additional dependencies:

  • numpy
  • scipy (for data processing)
  • matplotlib (for visualization)
  • nltk

Using pip or conda should suffice for installing most of these dependencies. To get the right command for installing PyTorch, refer to the installation widget on the PyTorch website.

Models

A model is a pairing of a controller network with a neural data structure. There are two kinds of models:

  • models.VanillaModel is a simple controller-data structure network. This means there will be one step of computation per input.
  • models.BufferedModel adds input and output buffers to the vanilla model. This allows the network to run for extra computation steps.

To use a model, call model.forward() on every input and model.init_controller() whenever you want to reset the stack between inputs. You can find example training logic in the tasks package.

Data structures

  • structs.Stack implements the differentiable stack data structure.
  • structs.Queue implements the differentiable queue data structure.

The buffered models use read-only and write-only versions of the differentiable queue for their input and output buffers.

Tasks

The Task class defines specific tasks that models can be trained on. Below are some formal language tasks that we have explored using stack models.

String reversal

The ReverseTask trains a feed-forward controller network to do string reversal. The code generates 800 random binary strings which the network must reverse in a sequence-to-sequence fashion:

Input:   1 1 0 1 # # # #
Label:   # # # # 1 0 1 1

By 10 epochs, the model tends to achieve 100% accuracy. The config for this task is called final_reverse_config.

Context-free language modelling

CFGTask can be used to train a context-free language model. Many interesting questions probing linguistic structure can be reduced to special cases of this general task. For example, the task can be used to model a language of balanced parentheses. The configuration for the parentheses task is final_dyck_config.

Evaluation tasks

We also have a class for evaluation tasks. These are tasks where output i can be succintly expressed as some function of inputs 0, .., i. Some applications of this are evaluation of parity and reverse polish boolean formulae.

Real datasets

The data folder contains several real datasets that the stack can be trained on. We should implement a task for reading in these datasets.

Owner
Will Merrill
NLP x linguistics x theory w/ AllenNLP.
Will Merrill
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix πŸ‘‹ labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

schissmantics 26 May 24, 2022
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight πŸ“˜ Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022